from models import SynthesizerTrn from vits_pinyin import VITS_PinYin from text import cleaned_text_to_sequence from text.symbols import symbols import gradio as gr import utils import torch import argparse import os import re import logging logging.getLogger('numba').setLevel(logging.WARNING) limitation = os.getenv("SYSTEM") == "spaces" def create_calback(net_g: SynthesizerTrn, tts_front: VITS_PinYin): def tts_calback(text, dur_scale): if limitation: text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) max_len = 150 if text_len > max_len: print(" Text is too long \n") return "Error: Text is too long,max len:"+str(max_len), None print(" start convert text: "+text) phonemes, char_embeds = tts_front.chinese_to_phonemes(text) input_ids = cleaned_text_to_sequence(phonemes) with torch.no_grad(): x_tst = torch.LongTensor(input_ids).unsqueeze(0).to(device) x_tst_lengths = torch.LongTensor([len(input_ids)]).to(device) x_tst_prosody = torch.FloatTensor( char_embeds).unsqueeze(0).to(device) audio = net_g.infer(x_tst, x_tst_lengths, x_tst_prosody, noise_scale=0.5, length_scale=dur_scale)[0][0, 0].data.cpu().float().numpy() del x_tst, x_tst_lengths, x_tst_prosody return "Success", (16000, audio) return tts_calback example = [['天空呈现的透心的蓝,像极了当年。总在这样的时候,透过窗棂,心在天空里无尽的游弋!柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。', 1], ['风的影子翻阅过淡蓝色的信笺,柔和的文字浅浅地漫过我安静的眸,一如几朵悠闲的云儿,忽而氤氲成汽,忽而修饰成花,铅华洗尽后的透彻和靓丽,爽爽朗朗,轻轻盈盈', 1], ['时光仿佛有穿越到了从前,在你诗情画意的眼波中,在你舒适浪漫的暇思里,我如风中的思绪徜徉广阔天际,仿佛一片沾染了快乐的羽毛,在云环影绕颤动里浸润着风的呼吸,风的诗韵,那清新的耳语,那婉约的甜蜜,那恬淡的温馨,将一腔情澜染得愈发的缠绵。', 1],] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") args = parser.parse_args() device = torch.device("cpu") # pinyin tts_front = VITS_PinYin("./bert", device) # config hps = utils.get_hparams_from_file("./configs/bert_vits.json") # model net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) model_path = "vits_bert_model.pth" utils.load_model(model_path, net_g) net_g.eval() net_g.to(device) tts_calback = create_calback(net_g, tts_front) app = gr.Blocks() with app: gr.Markdown("# Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft\n\n" "code : github.com/PlayVoice/vits_chinese\n\n" "1, Hidden prosody embedding from BERT,get natural pauses in grammar\n\n" "2, Infer loss from NaturalSpeech,get less sound error\n\n" "3, Framework of VITS,get high audio quality\n\n" ) with gr.Tabs(): with gr.TabItem("TTS"): with gr.Row(): with gr.Column(): textbox = gr.TextArea(label="Text", placeholder="Type your sentence here (Maximum 150 words)", value="中文语音合成", elem_id=f"tts-input") duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='速度 Speed') with gr.Column(): text_output = gr.Textbox(label="Message") audio_output = gr.Audio( label="Output Audio", elem_id="tts-audio") btn = gr.Button("Generate!") btn.click(tts_calback, inputs=[textbox, duration_slider], outputs=[text_output, audio_output]) gr.Examples( examples=example, inputs=[textbox, duration_slider], outputs=[text_output, audio_output], fn=tts_calback ) app.queue(concurrency_count=3).launch(show_api=False, share=args.share,show_error=True)