File size: 8,412 Bytes
fc0d94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import math
from typing import List, Optional, Literal, Tuple

import numpy as np
import pybase16384 as b14
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from vector_quantize_pytorch import GroupedResidualFSQ


class ConvNeXtBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        intermediate_dim: int,
        kernel: int,
        dilation: int,
        layer_scale_init_value: float = 1e-6,
    ):
        # ConvNeXt Block copied from Vocos.
        super().__init__()
        self.dwconv = nn.Conv1d(
            dim,
            dim,
            kernel_size=kernel,
            padding=dilation * (kernel // 2),
            dilation=dilation,
            groups=dim,
        )  # depthwise conv

        self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, intermediate_dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(intermediate_dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )

    def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor:
        residual = x

        y = self.dwconv(x)
        y.transpose_(1, 2)  # (B, C, T) -> (B, T, C)
        x = self.norm(y)
        del y
        y = self.pwconv1(x)
        del x
        x = self.act(y)
        del y
        y = self.pwconv2(x)
        del x
        if self.gamma is not None:
            y *= self.gamma
        y.transpose_(1, 2)  # (B, T, C) -> (B, C, T)

        x = y + residual
        del y

        return x


class GFSQ(nn.Module):

    def __init__(
        self, dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose=True
    ):
        super(GFSQ, self).__init__()
        self.quantizer = GroupedResidualFSQ(
            dim=dim,
            levels=list(levels),
            num_quantizers=R,
            groups=G,
        )
        self.n_ind = math.prod(levels)
        self.eps = eps
        self.transpose = transpose
        self.G = G
        self.R = R

    def _embed(self, x: torch.Tensor):
        if self.transpose:
            x = x.transpose(1, 2)
        """
        x = rearrange(
            x, "b t (g r) -> g b t r", g = self.G, r = self.R,
        )
        """
        x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
        feat = self.quantizer.get_output_from_indices(x)
        return feat.transpose_(1, 2) if self.transpose else feat

    def __call__(self, x: torch.Tensor) -> torch.Tensor:
        return super().__call__(x)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.transpose:
            x.transpose_(1, 2)
        # feat, ind = self.quantizer(x)
        _, ind = self.quantizer(x)
        """
        ind = rearrange(
            ind, "g b t r ->b t (g r)",
        )
        """
        ind = ind.permute(1, 2, 0, 3).contiguous()
        ind = ind.view(ind.size(0), ind.size(1), -1)
        """
        embed_onehot_tmp = F.one_hot(ind.long(), self.n_ind)
        embed_onehot = embed_onehot_tmp.to(x.dtype)
        del embed_onehot_tmp
        e_mean = torch.mean(embed_onehot, dim=[0, 1])
        # e_mean = e_mean / (e_mean.sum(dim=1) + self.eps).unsqueeze(1)
        torch.div(e_mean, (e_mean.sum(dim=1) + self.eps).unsqueeze(1), out=e_mean)
        perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + self.eps), dim=1))

        return 
            torch.zeros(perplexity.shape, dtype=x.dtype, device=x.device),
            feat.transpose_(1, 2) if self.transpose else feat,
            perplexity,
        """
        return ind.transpose_(1, 2) if self.transpose else ind


class DVAEDecoder(nn.Module):
    def __init__(
        self,
        idim: int,
        odim: int,
        n_layer=12,
        bn_dim=64,
        hidden=256,
        kernel=7,
        dilation=2,
        up=False,
    ):
        super().__init__()
        self.up = up
        self.conv_in = nn.Sequential(
            nn.Conv1d(idim, bn_dim, 3, 1, 1),
            nn.GELU(),
            nn.Conv1d(bn_dim, hidden, 3, 1, 1),
        )
        self.decoder_block = nn.ModuleList(
            [
                ConvNeXtBlock(
                    hidden,
                    hidden * 4,
                    kernel,
                    dilation,
                )
                for _ in range(n_layer)
            ]
        )
        self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)

    def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor:
        # B, C, T
        y = self.conv_in(x)
        del x
        for f in self.decoder_block:
            y = f(y, conditioning)

        x = self.conv_out(y)
        del y
        return x


class MelSpectrogramFeatures(torch.nn.Module):
    def __init__(
        self,
        sample_rate=24000,
        n_fft=1024,
        hop_length=256,
        n_mels=100,
        padding: Literal["center", "same"] = "center",
    ):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.mel_spec = torchaudio.transforms.MelSpectrogram(
            sample_rate=sample_rate,
            n_fft=n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
            center=padding == "center",
            power=1,
        )

    def __call__(self, audio: torch.Tensor) -> torch.Tensor:
        return super().__call__(audio)

    def forward(self, audio: torch.Tensor) -> torch.Tensor:
        mel: torch.Tensor = self.mel_spec(audio)
        features = torch.log(torch.clip(mel, min=1e-5))
        return features


class DVAE(nn.Module):
    def __init__(
        self,
        decoder_config: dict,
        encoder_config: Optional[dict] = None,
        vq_config: Optional[dict] = None,
        dim=512,
        coef: Optional[str] = None,
    ):
        super().__init__()
        if coef is None:
            coef = torch.rand(100)
        else:
            coef = torch.from_numpy(
                np.copy(np.frombuffer(b14.decode_from_string(coef), dtype=np.float32))
            )
        self.register_buffer("coef", coef.unsqueeze(0).unsqueeze_(2))

        if encoder_config is not None:
            self.downsample_conv = nn.Sequential(
                nn.Conv1d(100, dim, 3, 1, 1),
                nn.GELU(),
                nn.Conv1d(dim, dim, 4, 2, 1),
                nn.GELU(),
            )
            self.preprocessor_mel = MelSpectrogramFeatures()
            self.encoder: Optional[DVAEDecoder] = DVAEDecoder(**encoder_config)

        self.decoder = DVAEDecoder(**decoder_config)
        self.out_conv = nn.Conv1d(dim, 100, 3, 1, 1, bias=False)
        if vq_config is not None:
            self.vq_layer = GFSQ(**vq_config)
        else:
            self.vq_layer = None

    def __repr__(self) -> str:
        return b14.encode_to_string(
            self.coef.cpu().numpy().astype(np.float32).tobytes()
        )

    def __call__(
        self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode"
    ) -> torch.Tensor:
        return super().__call__(inp, mode)

    @torch.inference_mode()
    def forward(
        self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode"
    ) -> torch.Tensor:
        if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None:
            mel = self.preprocessor_mel(inp)
            x: torch.Tensor = self.downsample_conv(
                torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel),
            ).unsqueeze_(0)
            del mel
            x = self.encoder(x)
            ind = self.vq_layer(x)
            del x
            return ind

        if self.vq_layer is not None:
            vq_feats = self.vq_layer._embed(inp)
        else:
            vq_feats = inp

        vq_feats = (
            vq_feats.view(
                (vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)),
            )
            .permute(0, 2, 3, 1)
            .flatten(2)
        )

        dec_out = self.out_conv(
            self.decoder(
                x=vq_feats,
            ),
        )

        del vq_feats

        return torch.mul(dec_out, self.coef, out=dec_out)