# coding=utf-8 # Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class BridgeTowerImageProcessingTester(unittest.TestCase): def __init__( self, parent, do_resize: bool = True, size: Dict[str, int] = None, size_divisor: int = 32, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, do_center_crop: bool = True, image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073], image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711], do_pad: bool = True, batch_size=7, min_resolution=30, max_resolution=400, num_channels=3, ): self.parent = parent self.do_resize = do_resize self.size = size if size is not None else {"shortest_edge": 288} self.size_divisor = size_divisor self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_center_crop = do_center_crop self.image_mean = image_mean self.image_std = image_std self.do_pad = do_pad self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to BridgeTowerImageProcessor, assuming do_resize is set to True with a scalar size and size_divisor. """ if not batched: size = self.size["shortest_edge"] image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] scale = size / min(w, h) if h < w: newh, neww = size, scale * w else: newh, neww = scale * h, size max_size = int((1333 / 800) * size) if max(newh, neww) > max_size: scale = max_size / max(newh, neww) newh = newh * scale neww = neww * scale newh, neww = int(newh + 0.5), int(neww + 0.5) expected_height, expected_width = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width @require_torch @require_vision class BridgeTowerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): image_processing_class = BridgeTowerImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = BridgeTowerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "size_divisor")) def test_batch_feature(self): pass def test_call_pil(self): # Initialize feature_extractor image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_call_numpy(self): # Initialize feature_extractor image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_call_pytorch(self): # Initialize feature_extractor image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def test_equivalence_pad_and_create_pixel_mask(self): # Initialize feature_extractors image_processing_1 = self.image_processing_class(**self.image_processor_dict) image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False) # create random PyTorch tensors image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test whether the method "pad_and_return_pixel_mask" and calling the image processor return the same tensors encoded_images_with_method = image_processing_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt") encoded_images = image_processing_2(image_inputs, return_tensors="pt") self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4) ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4) )