# Automatic Speech Recognition Examples ## Table of Contents - [Automatic Speech Recognition with CTC](#connectionist-temporal-classification) - [Single GPU example](#single-gpu-ctc) - [Multi GPU example](#multi-gpu-ctc) - [Examples](#examples-ctc) - [TIMIT](#timit-ctc) - [Librispeech](#librispeech-ctc) - [Common Voice](#common-voice-ctc) - [Multilingual Librispeech](#multilingual-librispeech-ctc) - [Automatic Speech Recognition with Sequence-to-Sequence](#sequence-to-sequence) - [Whisper Model](#whisper-model) - [Speech-Encoder-Decoder Model](#warm-started-speech-encoder-decoder-model) - [Examples](#examples-seq2seq) - [Librispeech](#librispeech-seq2seq) ## Connectionist Temporal Classification The script [`run_speech_recognition_ctc.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py) can be used to fine-tune any pretrained [Connectionist Temporal Classification Model](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForCTC) for automatic speech recognition on one of the [official speech recognition datasets](https://huggingface.co/datasets?task_ids=task_ids:automatic-speech-recognition) or a custom dataset. Speech recognition models that have been pretrained in unsupervised fashion on audio data alone, *e.g.* [Wav2Vec2](https://huggingface.co/transformers/main/model_doc/wav2vec2.html), [HuBERT](https://huggingface.co/transformers/main/model_doc/hubert.html), [XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html), have shown to require only very little annotated data to yield good performance on automatic speech recognition datasets. In the script [`run_speech_recognition_ctc`], we first create a vocabulary from all unique characters of both the training data and evaluation data. Then, we preprocesses the speech recognition dataset, which includes correct resampling, normalization and padding. Finally, the pretrained speech recognition model is fine-tuned on the annotated speech recognition datasets using CTC loss. --- **NOTE** If you encounter problems with data preprocessing by setting `--preprocessing_num_workers` > 1, you might want to set the environment variable `OMP_NUM_THREADS` to 1 as follows: ```bash OMP_NUM_THREADS=1 python run_speech_recognition_ctc ... ``` If the environment variable is not set, the training script might freeze, *i.e.* see: https://github.com/pytorch/audio/issues/1021#issuecomment-726915239 --- ### Single GPU CTC The following command shows how to fine-tune [XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html) on [Common Voice](https://huggingface.co/datasets/common_voice) using a single GPU in half-precision. ```bash python run_speech_recognition_ctc.py \ --dataset_name="common_voice" \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="tr" \ --output_dir="./wav2vec2-common_voice-tr-demo" \ --overwrite_output_dir \ --num_train_epochs="15" \ --per_device_train_batch_size="16" \ --gradient_accumulation_steps="2" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --length_column_name="input_length" \ --save_steps="400" \ --eval_steps="100" \ --layerdrop="0.0" \ --save_total_limit="3" \ --freeze_feature_encoder \ --gradient_checkpointing \ --chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \ --fp16 \ --group_by_length \ --push_to_hub \ --do_train --do_eval ``` On a single V100 GPU, this script should run in *ca.* 1 hour 20 minutes and yield a CTC loss of **0.39** and word error rate of **0.35**. ### Multi GPU CTC The following command shows how to fine-tune [XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html) on [Common Voice](https://huggingface.co/datasets/common_voice) using 8 GPUs in half-precision. ```bash python -m torch.distributed.launch \ --nproc_per_node 8 run_speech_recognition_ctc.py \ --dataset_name="common_voice" \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="tr" \ --output_dir="./wav2vec2-common_voice-tr-demo-dist" \ --overwrite_output_dir \ --num_train_epochs="15" \ --per_device_train_batch_size="4" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --length_column_name="input_length" \ --save_steps="400" \ --eval_steps="100" \ --logging_steps="1" \ --layerdrop="0.0" \ --save_total_limit="3" \ --freeze_feature_encoder \ --gradient_checkpointing \ --chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \ --fp16 \ --group_by_length \ --push_to_hub \ --do_train --do_eval ``` On 8 V100 GPUs, this script should run in *ca.* 18 minutes and yield a CTC loss of **0.39** and word error rate of **0.36**. ### Multi GPU CTC with Dataset Streaming The following command shows how to use [Dataset Streaming mode](https://huggingface.co/docs/datasets/dataset_streaming.html) to fine-tune [XLS-R](https://huggingface.co/transformers/main/model_doc/xls_r.html) on [Common Voice](https://huggingface.co/datasets/common_voice) using 4 GPUs in half-precision. Streaming mode imposes several constraints on training: 1. We need to construct a tokenizer beforehand and define it via `--tokenizer_name_or_path`. 2. `--num_train_epochs` has to be replaced by `--max_steps`. Similarly, all other epoch-based arguments have to be replaced by step-based ones. 3. Full dataset shuffling on each epoch is not possible, since we don't have the whole dataset available at once. However, the `--shuffle_buffer_size` argument controls how many examples we can pre-download before shuffling them. ```bash **python -m torch.distributed.launch \ --nproc_per_node 4 run_speech_recognition_ctc_streaming.py \ --dataset_name="common_voice" \ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \ --tokenizer_name_or_path="anton-l/wav2vec2-tokenizer-turkish" \ --dataset_config_name="tr" \ --train_split_name="train+validation" \ --eval_split_name="test" \ --output_dir="wav2vec2-xls-r-common_voice-tr-ft" \ --overwrite_output_dir \ --max_steps="5000" \ --per_device_train_batch_size="8" \ --gradient_accumulation_steps="2" \ --learning_rate="5e-4" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --save_steps="500" \ --eval_steps="500" \ --logging_steps="1" \ --layerdrop="0.0" \ --eval_metrics wer cer \ --save_total_limit="1" \ --mask_time_prob="0.3" \ --mask_time_length="10" \ --mask_feature_prob="0.1" \ --mask_feature_length="64" \ --freeze_feature_encoder \ --chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \ --max_duration_in_seconds="20" \ --shuffle_buffer_size="500" \ --fp16 \ --push_to_hub \ --do_train --do_eval \ --gradient_checkpointing** ``` On 4 V100 GPUs, this script should run in *ca.* 3h 31min and yield a CTC loss of **0.35** and word error rate of **0.29**. ### Examples CTC The following tables present a couple of example runs on the most popular speech-recognition datasets. The presented performances are by no means optimal as no hyper-parameter tuning was done. Nevertheless, they can serve as a baseline to improve upon. #### TIMIT CTC - [TIMIT](https://huggingface.co/datasets/timit_asr) | Dataset | Dataset Config | Pretrained Model | Word error rate on eval | Phoneme error rate on eval | GPU setup | Training time | Fine-tuned Model & Logs | Command to reproduce | |-------|------------------------------|-------------|---------------|---------------|----------------------|-------------| -------------| ------- | | [TIMIT](https://huggingface.co/datasets/timit_asr)| - | [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 0.21 | - | 1 GPU TITAN RTX | 32min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-base-timit-fine-tuned) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-base-timit-fine-tuned/blob/main/run.sh) | | [TIMIT](https://huggingface.co/datasets/timit_asr)| - | [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 0.21 | - | 1 GPU TITAN RTX | 32min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-base-timit-fine-tuned) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-base-timit-fine-tuned/blob/main/run.sh) | | [TIMIT](https://huggingface.co/datasets/timit_asr)| - | [unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) | 0.22 | - | 1 GPU TITAN RTX | 35min | [here](https://huggingface.co/patrickvonplaten/unispeech-large-1500h-cv-timit) | [run.sh](https://huggingface.co/patrickvonplaten/unispeech-large-1500h-cv-timit/blob/main/run.sh) | | [TIMIT](https://huggingface.co/datasets/timit_asr)| - | [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) | 0.30 | - | 1 GPU TITAN RTX | 28min | [here](https://huggingface.co/patrickvonplaten/sew-small-100k-timit) | [run.sh](https://huggingface.co/patrickvonplaten/sew-small-100k-timit/blob/main/run.sh) | | [TIMIT](https://huggingface.co/datasets/timit_asr)| - | [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) | 0.68 | - | 1 GPU TITAN RTX | 26min | [here](https://huggingface.co/patrickvonplaten/distilhubert-timit) | [run.sh](https://huggingface.co/patrickvonplaten/distilhubert-timit/blob/main/run.sh) | #### Librispeech CTC - [Librispeech](https://huggingface.co/datasets/librispeech_asr) | Dataset | Dataset Config | Pretrained Model | Word error rate on eval | Phoneme error rate on eval | GPU setup | Training time | Fine-tuned Model & Logs | Command to reproduce | |-------|------------------------------|-------------|---------------|---------------|----------------------|-------------| -------------| ------- | | [Librispeech](https://huggingface.co/datasets/librispeech_asr)| `"clean"` - `"train.100"` | [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) | 0.049 | - | 8 GPU V100 | 1h30min | [here](https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-large) | [run.sh](https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-large/blob/main/run.sh) | | [Librispeech](https://huggingface.co/datasets/librispeech_asr)| `"clean"` - `"train.100"` | [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) | 0.068 | - | 8 GPU V100 | 1h30min | [here](https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus) | [run.sh](https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus/blob/main/run.sh) | | [Librispeech](https://huggingface.co/datasets/librispeech_asr)| `"clean"` - `"train.100"` | [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) | 0.042 | - | 8 GPU V100 | 1h30min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist/blob/main/run.sh) | | [Librispeech](https://huggingface.co/datasets/librispeech_asr)| `"clean"` - `"train.100"` | [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) | 0.042 | - | 8 GPU V100 | 1h30min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist/blob/main/run.sh) | | [Librispeech](https://huggingface.co/datasets/librispeech_asr)| `"clean"` - `"train.100"` | [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) | 0.088 | - | 8 GPU V100 | 1h30min | [here](https://huggingface.co/patrickvonplaten/hubert-librispeech-clean-100h-demo-dist) | [run.sh](https://huggingface.co/patrickvonplaten/hubert-librispeech-clean-100h-demo-dist/blob/main/run.sh) | | [Librispeech](https://huggingface.co/datasets/librispeech_asr)| `"clean"` - `"train.100"` | [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) | 0.167 | | 8 GPU V100 | 54min | [here](https://huggingface.co/patrickvonplaten/sew-mid-100k-librispeech-clean-100h-ft) | [run.sh](https://huggingface.co/patrickvonplaten/sew-mid-100k-librispeech-clean-100h-ft/blob/main/run.sh) | #### Common Voice CTC - [Common Voice](https://huggingface.co/datasets/common_voice) | Dataset | Dataset Config | Pretrained Model | Word error rate on eval | Phoneme error rate on eval | GPU setup | Training time | Fine-tuned Model & Logs | Command to reproduce | |-------|------------------------------|-------------|---------------|---------------|----------------------|-------------| -------------| ------- | | [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_3_0)| `"tr"` | [facebook/wav2vec2-large-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) | - | 0.099 | 8 GPU V100 | 23min | [here](https://huggingface.co/patrickvonplaten/xls-r-300m-tr-phoneme) | [run.sh](https://huggingface.co/patrickvonplaten/xls-r-300m-tr-phoneme/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_3_0)| `"it"` | [facebook/wav2vec2-large-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) | - | 0.077 | 8 GPU V100 | 23min | [here](https://huggingface.co/patrickvonplaten/xls-r-300m-it-phoneme) | [run.sh](https://huggingface.co/patrickvonplaten/xls-r-300m-it-phoneme/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_3_0)| `"sv-SE"` | [facebook/wav2vec2-large-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) | - | 0.099 | 8 GPU V100 | 23min | [here](https://huggingface.co/patrickvonplaten/xls-r-300m-sv-phoneme) | [run.sh](https://huggingface.co/patrickvonplaten/xls-r-300m-sv-phoneme/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/common_voice)| `"tr"` | [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) | 0.36 | - | 8 GPU V100 | 18min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-common_voice-tr-demo-dist) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-common_voice-tr-demo-dist/blob/main/run_dist.sh) | | [Common Voice](https://huggingface.co/datasets/common_voice)| `"tr"` | [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) | 0.31 | - | 8 GPU V100 | 1h05 | [here](https://huggingface.co/patrickvonplaten/wav2vec2-large-xlsr-53-common_voice-tr-ft) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-large-xlsr-53-common_voice-tr-ft/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/common_voice)| `"tr"` | [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) | 0.35 | - | 1 GPU V100 | 1h20min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-common_voice-tr-demo) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-common_voice-tr-demo/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/common_voice)| `"tr"` | [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) | 0.31 | - | 8 GPU V100 | 1h05 | [here](https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-300m-common_voice-tr-ft) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-300m-common_voice-tr-ft/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/common_voice)| `"tr"` | [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) | 0.21 | - | 2 GPU Titan 24 GB RAM | 15h10 | [here](https://huggingface.co/patrickvonplaten/wav2vec2-xls-r-1b-common_voice-tr-ft) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-large-xls-r-1b-common_voice-tr-ft/blob/main/run.sh) | | [Common Voice](https://huggingface.co/datasets/common_voice)| `"tr"` in streaming mode | [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) | 0.29 | - | 4 GPU V100 | 3h31 | [here](https://huggingface.co/anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream) | [run.sh](https://huggingface.co/anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream/blob/main/run.sh) | #### Multilingual Librispeech CTC - [Multilingual Librispeech](https://huggingface.co/datasets/multilingual_librispeech) | Dataset | Dataset Config | Pretrained Model | Word error rate on eval | Phoneme error rate on eval | GPU setup | Training time | Fine-tuned Model & Logs | Command to reproduce | |-------|------------------------------|-------------|---------------|---------------|----------------------|-------------| -------------| ------- | | [Multilingual Librispeech](https://huggingface.co/datasets/multilingual_librispeech)| `"german"` | [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) | 0.13 | - | 1 GPU Titan 24 GB RAM | 15h04 | [here](https://huggingface.co/patrickvonplaten/wav2vec2-xlsr-53-300m-mls-german-ft) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-xlsr-53-300m-mls-german-ft/blob/main/run.sh) | | [Multilingual Librispeech](https://huggingface.co/datasets/multilingual_librispeech)| `"german"` | [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) | 0.15 | - | 1 GPU Titan 24 GB RAM | 15h04 | [here](https://huggingface.co/patrickvonplaten/wav2vec2-300m-mls-german-ft) | [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-300m-mls-german-ft/blob/main/run.sh) | ## Sequence to Sequence The script [`run_speech_recognition_seq2seq.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) can be used to fine-tune any [Speech Sequence-to-Sequence Model](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForSpeechSeq2Seq) for automatic speech recognition on one of the [official speech recognition datasets](https://huggingface.co/datasets?task_ids=task_ids:automatic-speech-recognition) or a custom dataset. This includes the Whisper model from OpenAI or a warm-started Speech-Encoder-Decoder Model, examples for which are included below. ### Whisper Model We can load all components of the Whisper model directly from the pretrained checkpoint, including the pretrained model weights, feature extractor and tokenizer. We simply have to specify our fine-tuning dataset and training hyperparameters. #### Single GPU Whisper Training The following example shows how to fine-tune the [Whisper small](https://huggingface.co/openai/whisper-small) checkpoint on the Hindi subset of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) using a single GPU device in half-precision: ```bash python run_speech_recognition_seq2seq.py \ --model_name_or_path="openai/whisper-small" \ --dataset_name="mozilla-foundation/common_voice_11_0" \ --dataset_config_name="hi" \ --language="hindi" \ --train_split_name="train+validation" \ --eval_split_name="test" \ --max_steps="5000" \ --output_dir="./whisper-small-hi" \ --per_device_train_batch_size="16" \ --gradient_accumulation_steps="2" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-5" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="225" \ --preprocessing_num_workers="16" \ --length_column_name="input_length" \ --max_duration_in_seconds="30" \ --text_column_name="sentence" \ --freeze_feature_encoder="False" \ --gradient_checkpointing \ --group_by_length \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --predict_with_generate \ --use_auth_token ``` On a single V100, training should take approximately 8 hours, with a final cross-entropy loss of **1e-4** and word error rate of **32.6%**. If training on a different language, you should be sure to change the `language` argument. The `language` argument should be omitted for English speech recognition. #### Multi GPU Whisper Training The following example shows how to fine-tune the [Whisper small](https://huggingface.co/openai/whisper-small) checkpoint on the Hindi subset of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) using 2 GPU devices in half-precision: ```bash python -m torch.distributed.launch \ --nproc_per_node 2 run_speech_recognition_seq2seq.py \ --model_name_or_path="openai/whisper-small" \ --dataset_name="mozilla-foundation/common_voice_11_0" \ --dataset_config_name="hi" \ --language="hindi" \ --train_split_name="train+validation" \ --eval_split_name="test" \ --max_steps="5000" \ --output_dir="./whisper-small-hi" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --logging_steps="25" \ --learning_rate="1e-5" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --eval_steps="1000" \ --save_strategy="steps" \ --save_steps="1000" \ --generation_max_length="225" \ --preprocessing_num_workers="16" \ --length_column_name="input_length" \ --max_duration_in_seconds="30" \ --text_column_name="sentence" \ --freeze_feature_encoder="False" \ --gradient_checkpointing \ --group_by_length \ --fp16 \ --overwrite_output_dir \ --do_train \ --do_eval \ --predict_with_generate \ --use_auth_token ``` On two V100s, training should take approximately 4 hours, with a final cross-entropy loss of **1e-4** and word error rate of **32.6%**. ### Warm-Started Speech-Encoder-Decoder Model A very common use case is to leverage a pretrained speech encoder model, *e.g.* [Wav2Vec2](https://huggingface.co/transformers/main/model_doc/wav2vec2.html), [HuBERT](https://huggingface.co/transformers/main/model_doc/hubert.html) or [XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html), with a pretrained text decoder model, *e.g.* [BART](https://huggingface.co/docs/transformers/main/en/model_doc/bart#transformers.BartForCausalLM) or [GPT-2](https://huggingface.co/docs/transformers/main/en/model_doc/gpt2#transformers.GPT2ForCausalLM), to create a [Speech-Encoder-Decoder Model](https://huggingface.co/docs/transformers/main/en/model_doc/speech-encoder-decoder#speech-encoder-decoder-models). By pairing a pretrained speech model with a pretrained text model, the warm-started model has prior knowledge of both the source audio and target text domains. However, the cross-attention weights between the encoder and decoder are randomly initialised. Thus, the model requires fine-tuning to learn the cross-attention weights and align the encoder mapping with that of the decoder. We can perform this very fine-tuning procedure using the example script. As an example, let's instantiate a *Wav2Vec2-2-Bart* model with the `SpeechEnocderDecoderModel` framework. First create an empty repo on `hf.co`: ```bash huggingface-cli repo create wav2vec2-2-bart-base git clone https://huggingface.co//wav2vec2-2-bart-base cd wav2vec2-2-bart-base ``` Next, run the following script **inside** the just cloned repo: ```python from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2Processor # checkpoints to leverage encoder_id = "facebook/wav2vec2-base" decoder_id = "facebook/bart-base" # load and save speech-encoder-decoder model # set some hyper-parameters for training and evaluation model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True, encoder_feat_proj_dropout=0.0, encoder_layerdrop=0.0, max_length=200, num_beams=5) model.config.decoder_start_token_id = model.decoder.config.bos_token_id model.config.pad_token_id = model.decoder.config.pad_token_id model.config.eos_token_id = model.decoder.config.eos_token_id model.save_pretrained("./") # load and save processor feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id) tokenizer = AutoTokenizer.from_pretrained(decoder_id) processor = Wav2Vec2Processor(feature_extractor, tokenizer) processor.save_pretrained("./") ``` Finally, we can upload all files: ```bash git lfs install git add . && git commit -m "upload model files" && git push ``` and link the official `run_speech_recognition_seq2seq.py` script to the folder: ```bash ln -s $(realpath /examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) ./ ``` Note that we have added a randomly initialized _adapter layer_ to `wav2vec2-base` with the argument `encoder_add_adapter=True`. This adapter sub-samples the output sequence of `wav2vec2-base` along the time dimension. By default, a single output vector of `wav2vec2-base` has a receptive field of *ca.* 25ms (*cf.* Section *4.2* of the [official Wav2Vec2 paper](https://arxiv.org/pdf/2006.11477.pdf)), which represents a little less a single character. On the other hand, BART makes use of a sentence-piece tokenizer as an input processor, so that a single hidden vector of `bart-base` represents *ca.* 4 characters. To better align the receptive field of the *Wav2Vec2* output vectors with *BART*'s hidden-states in the cross-attention mechanism, we further subsample *Wav2Vec2*'s output by a factor of 8 by adding a convolution-based adapter. Having warm-started the speech-encoder-decoder model under `/wav2vec2-2-bart`, we can now fine-tune it on the task of speech recognition. In the script [`run_speech_recognition_seq2seq`], we load the warm-started model, feature extractor, and tokenizer, process a speech recognition dataset, and subsequently make use of the [`Seq2SeqTrainer`](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Seq2SeqTrainer) to train our system. Note that it is important to align the target transcriptions with the decoder's vocabulary. For example, the [`Librispeech`](https://huggingface.co/datasets/librispeech_asr) dataset only contains captilized letters in the transcriptions, whereas BART was pretrained mostly on normalized text. Thus, it is recommended to add the argument `--do_lower_case` to the fine-tuning script when using a warm-started `SpeechEncoderDecoderModel`. The model is fine-tuned on the standard cross-entropy language modeling loss for sequence-to-sequence (just like *T5* or *BART* in natural language processing). --- **NOTE** If you encounter problems with data preprocessing by setting `--preprocessing_num_workers` > 1, you might want to set the environment variable `OMP_NUM_THREADS` to 1 as follows: ```bash OMP_NUM_THREADS=1 python run_speech_recognition_ctc ... ``` If the environment variable is not set, the training script might freeze, *i.e.* see: https://github.com/pytorch/audio/issues/1021#issuecomment-726915239. --- #### Single GPU Seq2Seq The following command shows how to fine-tune [XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html) on [Common Voice](https://huggingface.co/datasets/common_voice) using a single GPU in half-precision. ```bash python run_speech_recognition_seq2seq.py \ --dataset_name="librispeech_asr" \ --model_name_or_path="./" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --eval_split_name="validation" \ --output_dir="./" \ --preprocessing_num_workers="16" \ --length_column_name="input_length" \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="8" \ --gradient_accumulation_steps="8" \ --learning_rate="3e-4" \ --warmup_steps="400" \ --evaluation_strategy="steps" \ --text_column_name="text" \ --save_steps="400" \ --eval_steps="400" \ --logging_steps="10" \ --save_total_limit="1" \ --freeze_feature_encoder \ --gradient_checkpointing \ --fp16 \ --group_by_length \ --predict_with_generate \ --generation_max_length="40" \ --generation_num_beams="1" \ --do_train --do_eval \ --do_lower_case ``` On a single V100 GPU, this script should run in *ca.* 5 hours and yield a cross-entropy loss of **0.405** and word error rate of **0.0728**. #### Multi GPU Seq2Seq The following command shows how to fine-tune [XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html) on [Common Voice](https://huggingface.co/datasets/common_voice) using 8 GPUs in half-precision. ```bash python -m torch.distributed.launch \ --nproc_per_node 8 run_speech_recognition_seq2seq.py \ --dataset_name="librispeech_asr" \ --model_name_or_path="./" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --eval_split_name="validation" \ --output_dir="./" \ --preprocessing_num_workers="16" \ --length_column_name="input_length" \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="8" \ --gradient_accumulation_steps="1" \ --learning_rate="3e-4" \ --warmup_steps="400" \ --evaluation_strategy="steps" \ --text_column_name="text" \ --save_steps="400" \ --eval_steps="400" \ --logging_steps="10" \ --save_total_limit="1" \ --freeze_feature_encoder \ --gradient_checkpointing \ --fp16 \ --group_by_length \ --predict_with_generate \ --do_train --do_eval \ --do_lower_case ``` On 8 V100 GPUs, this script should run in *ca.* 45 minutes and yield a cross-entropy loss of **0.405** and word error rate of **0.0728** ### Examples Seq2Seq #### Librispeech Seq2Seq - [Librispeech](https://huggingface.co/datasets/librispeech_asr) | Dataset | Dataset Config | Pretrained Model | Word error rate on eval | Phoneme error rate on eval | GPU setup | Training time | Fine-tuned Model & Logs | Command to reproduce | |----------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|------------|---------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Librispeech](https://huggingface.co/datasets/librispeech_asr) | `"clean"` - `"train.100"` | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) and [facebook/bart-base](https://huggingface.co/facebook/bart-base) | 0.0728 | - | 8 GPU V100 | 45min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-2-bart-base) | [create_model.py](https://huggingface.co/patrickvonplaten/wav2vec2-2-bart-base/blob/main/create_model.py) & [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-2-bart-base/blob/main/run_librispeech.sh) | | [Librispeech](https://huggingface.co/datasets/librispeech_asr) | `"clean"` - `"train.100"` | [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) and [facebook/bart-large](https://huggingface.co/facebook/bart-large) | 0.0486 | - | 8 GPU V100 | 1h20min | [here](https://huggingface.co/patrickvonplaten/wav2vec2-2-bart-large) | [create_model.py](https://huggingface.co/patrickvonplaten/wav2vec2-2-bart-large/blob/main/create_model.py) & [run.sh](https://huggingface.co/patrickvonplaten/wav2vec2-2-bart-large/blob/main/run_librispeech.sh) |