Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import unittest | |
from transformers import XLNetConfig, is_torch_available | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
XLNetForMultipleChoice, | |
XLNetForQuestionAnswering, | |
XLNetForQuestionAnsweringSimple, | |
XLNetForSequenceClassification, | |
XLNetForTokenClassification, | |
XLNetLMHeadModel, | |
XLNetModel, | |
) | |
from transformers.models.xlnet.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST | |
class XLNetModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
mem_len=10, | |
clamp_len=-1, | |
reuse_len=15, | |
is_training=True, | |
use_labels=True, | |
vocab_size=99, | |
cutoffs=[10, 50, 80], | |
hidden_size=32, | |
num_attention_heads=4, | |
d_inner=128, | |
num_hidden_layers=5, | |
type_sequence_label_size=2, | |
untie_r=True, | |
bi_data=False, | |
same_length=False, | |
initializer_range=0.05, | |
seed=1, | |
type_vocab_size=2, | |
bos_token_id=1, | |
eos_token_id=2, | |
pad_token_id=5, | |
num_choices=4, | |
): | |
self.parent = parent | |
self.batch_size = 14 | |
self.seq_length = 7 | |
self.mem_len = 10 | |
# self.key_len = seq_length + mem_len | |
self.clamp_len = -1 | |
self.reuse_len = 15 | |
self.is_training = True | |
self.use_labels = True | |
self.vocab_size = 99 | |
self.cutoffs = [10, 50, 80] | |
self.hidden_size = 32 | |
self.num_attention_heads = 4 | |
self.d_inner = 128 | |
self.num_hidden_layers = 5 | |
self.type_sequence_label_size = 2 | |
self.untie_r = True | |
self.bi_data = False | |
self.same_length = False | |
self.initializer_range = 0.05 | |
self.seed = 1 | |
self.type_vocab_size = 2 | |
self.bos_token_id = 1 | |
self.eos_token_id = 2 | |
self.pad_token_id = 5 | |
self.num_choices = 4 | |
def prepare_config_and_inputs(self): | |
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size) | |
perm_mask = torch.zeros( | |
self.batch_size, | |
self.seq_length + 1, | |
self.seq_length + 1, | |
dtype=torch.float, | |
device=torch_device, | |
) | |
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token | |
target_mapping = torch.zeros( | |
self.batch_size, | |
1, | |
self.seq_length + 1, | |
dtype=torch.float, | |
device=torch_device, | |
) | |
target_mapping[:, 0, -1] = 1.0 # predict last token | |
sequence_labels = None | |
lm_labels = None | |
is_impossible_labels = None | |
token_labels = None | |
if self.use_labels: | |
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
is_impossible_labels = ids_tensor([self.batch_size], 2).float() | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
config = self.get_config() | |
return ( | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
) | |
def get_config(self): | |
return XLNetConfig( | |
vocab_size=self.vocab_size, | |
d_model=self.hidden_size, | |
n_head=self.num_attention_heads, | |
d_inner=self.d_inner, | |
n_layer=self.num_hidden_layers, | |
untie_r=self.untie_r, | |
mem_len=self.mem_len, | |
clamp_len=self.clamp_len, | |
same_length=self.same_length, | |
reuse_len=self.reuse_len, | |
bi_data=self.bi_data, | |
initializer_range=self.initializer_range, | |
num_labels=self.type_sequence_label_size, | |
bos_token_id=self.bos_token_id, | |
pad_token_id=self.pad_token_id, | |
eos_token_id=self.eos_token_id, | |
) | |
def set_seed(self): | |
random.seed(self.seed) | |
torch.manual_seed(self.seed) | |
def create_and_check_xlnet_base_model( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetModel(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids_1, input_mask=input_mask) | |
result = model(input_ids_1, attention_mask=input_mask) | |
result = model(input_ids_1, token_type_ids=segment_ids) | |
result = model(input_ids_1) | |
config.mem_len = 0 | |
model = XLNetModel(config) | |
model.to(torch_device) | |
model.eval() | |
base_model_output = model(input_ids_1) | |
self.parent.assertEqual(len(base_model_output), 2) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertListEqual( | |
[mem.shape for mem in result.mems], | |
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers, | |
) | |
def create_and_check_use_mems_train( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetForSequenceClassification(config) | |
model.to(torch_device) | |
model.train() | |
train_size = input_ids_1.shape[0] | |
batch_size = 4 | |
for i in range(train_size // batch_size + 1): | |
input_ids = input_ids_1[i : (i + 1) * batch_size] | |
labels = sequence_labels[i : (i + 1) * batch_size] | |
outputs = model(input_ids=input_ids, labels=labels, return_dict=True) | |
self.parent.assertIsNone(outputs.mems) | |
self.parent.assertIsNotNone(outputs.loss) | |
def create_and_check_xlnet_model_use_mems( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
causal_mask = torch.ones( | |
input_ids_1.shape[0], | |
input_ids_1.shape[1], | |
input_ids_1.shape[1], | |
dtype=torch.float, | |
device=torch_device, | |
) | |
causal_mask = torch.triu(causal_mask, diagonal=0) | |
outputs_cache = model(input_ids_1, use_mems=True, perm_mask=causal_mask) | |
outputs_no_cache = model(input_ids_1, use_mems=False, perm_mask=causal_mask) | |
outputs_conf = model(input_ids_1) | |
self.parent.assertTrue(len(outputs_cache) == len(outputs_conf)) | |
self.parent.assertTrue(len(outputs_cache) == len(outputs_no_cache) + 1) | |
output, mems = outputs_cache.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids_1, next_tokens], dim=-1) | |
# causal mask | |
causal_mask = torch.ones( | |
input_ids_1.shape[0], | |
input_ids_1.shape[1] + 1, | |
input_ids_1.shape[1] + 1, | |
dtype=torch.float, | |
device=torch_device, | |
) | |
causal_mask = torch.triu(causal_mask, diagonal=0) | |
single_mask = torch.ones(input_ids_1.shape[0], 1, 1, dtype=torch.float, device=torch_device) | |
# second forward pass | |
output_from_no_past = model(next_input_ids, perm_mask=causal_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, mems=mems, perm_mask=single_mask)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_xlnet_base_model_with_att_output( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetModel(config) | |
model.to(torch_device) | |
model.eval() | |
attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)["attentions"] | |
self.parent.assertEqual(len(attentions), config.n_layer) | |
self.parent.assertIsInstance(attentions[0], tuple) | |
self.parent.assertEqual(len(attentions[0]), 2) | |
self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape) | |
def create_and_check_xlnet_lm_head( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetLMHeadModel(config) | |
model.to(torch_device) | |
model.eval() | |
result1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels) | |
result2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=result1.mems) | |
_ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping) | |
self.parent.assertEqual(result1.loss.shape, ()) | |
self.parent.assertEqual(result1.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
self.parent.assertListEqual( | |
[mem.shape for mem in result1.mems], | |
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers, | |
) | |
self.parent.assertEqual(result2.loss.shape, ()) | |
self.parent.assertEqual(result2.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
self.parent.assertListEqual( | |
[mem.shape for mem in result2.mems], | |
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, | |
) | |
def create_and_check_xlnet_qa( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetForQuestionAnswering(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids_1) | |
result_with_labels = model( | |
input_ids_1, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
cls_index=sequence_labels, | |
is_impossible=is_impossible_labels, | |
p_mask=input_mask, | |
) | |
result_with_labels = model( | |
input_ids_1, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
cls_index=sequence_labels, | |
is_impossible=is_impossible_labels, | |
) | |
total_loss, mems = result_with_labels.to_tuple() | |
result_with_labels = model( | |
input_ids_1, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
total_loss, mems = result_with_labels.to_tuple() | |
self.parent.assertEqual(result_with_labels.loss.shape, ()) | |
self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) | |
self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) | |
self.parent.assertEqual( | |
result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) | |
) | |
self.parent.assertEqual( | |
result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) | |
) | |
self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) | |
self.parent.assertListEqual( | |
[mem.shape for mem in result.mems], | |
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers, | |
) | |
def create_and_check_xlnet_token_classif( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetForTokenClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids_1) | |
result = model(input_ids_1, labels=token_labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.type_sequence_label_size)) | |
self.parent.assertListEqual( | |
[mem.shape for mem in result.mems], | |
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers, | |
) | |
def create_and_check_xlnet_sequence_classif( | |
self, | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
): | |
model = XLNetForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids_1) | |
result = model(input_ids_1, labels=sequence_labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
self.parent.assertListEqual( | |
[mem.shape for mem in result.mems], | |
[(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids_1, | |
input_ids_2, | |
input_ids_q, | |
perm_mask, | |
input_mask, | |
target_mapping, | |
segment_ids, | |
lm_labels, | |
sequence_labels, | |
is_impossible_labels, | |
token_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids_1} | |
return config, inputs_dict | |
class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
XLNetModel, | |
XLNetLMHeadModel, | |
XLNetForTokenClassification, | |
XLNetForSequenceClassification, | |
XLNetForQuestionAnswering, | |
XLNetForQuestionAnsweringSimple, | |
XLNetForMultipleChoice, | |
) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = ( | |
(XLNetLMHeadModel,) if is_torch_available() else () | |
) # TODO (PVP): Check other models whether language generation is also applicable | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": XLNetModel, | |
"question-answering": XLNetForQuestionAnsweringSimple, | |
"text-classification": XLNetForSequenceClassification, | |
"text-generation": XLNetLMHeadModel, | |
"token-classification": XLNetForTokenClassification, | |
"zero-shot": XLNetForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
fx_compatible = False | |
test_pruning = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
# IndexError: index out of range in self | |
return True | |
# XLNet has 2 QA models -> need to manually set the correct labels for one of them here | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "XLNetForQuestionAnswering": | |
inputs_dict["start_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
inputs_dict["end_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = XLNetModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_xlnet_base_model(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs) | |
def test_xlnet_base_model_use_mems(self): | |
# checking that in auto-regressive mode, `use_mems` gives the same results | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_model_use_mems(*config_and_inputs) | |
def test_seq_classification_use_mems_train(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_use_mems_train(*config_and_inputs) | |
def test_xlnet_base_model_with_att_output(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_base_model_with_att_output(*config_and_inputs) | |
def test_xlnet_lm_head(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs) | |
def test_xlnet_sequence_classif(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs) | |
def test_xlnet_token_classif(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_token_classif(*config_and_inputs) | |
def test_xlnet_qa(self): | |
self.model_tester.set_seed() | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_xlnet_qa(*config_and_inputs) | |
def test_retain_grad_hidden_states_attentions(self): | |
# xlnet cannot keep gradients in attentions or hidden states | |
return | |
# overwrite from test_modeling_common | |
def _mock_init_weights(self, module): | |
if hasattr(module, "weight") and module.weight is not None: | |
module.weight.data.fill_(3) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.fill_(3) | |
for param in ["q", "k", "v", "o", "r", "r_r_bias", "r_s_bias", "r_w_bias", "seg_embed", "mask_emb"]: | |
if hasattr(module, param) and getattr(module, param) is not None: | |
weight = getattr(module, param) | |
weight.data.fill_(3) | |
def _check_hidden_states_for_generate( | |
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 | |
): | |
self.assertIsInstance(hidden_states, tuple) | |
self.assertListEqual( | |
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], | |
[True] * len(hidden_states), | |
) | |
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) | |
for idx, iter_hidden_states in enumerate(hidden_states): | |
# check hidden size | |
for i, layer_hidden_states in enumerate(iter_hidden_states): | |
# every 2nd tensor is from extra stream | |
if i % 2 != 0: | |
seq_len = 1 | |
else: | |
# for first item dummy PAD token is appended so need one more | |
seq_len = (min_length + 1) if idx == 0 else min_length | |
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) | |
self.assertEqual(layer_hidden_states.shape, expected_shape) | |
def _check_attentions_for_generate( | |
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 | |
): | |
self.assertIsInstance(attentions, tuple) | |
self.assertListEqual( | |
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) | |
) | |
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) | |
for idx, attentions_item in enumerate(attentions): | |
for iter_attentions in attentions_item: | |
tgt_len = min_length | |
# for first item dummy PAD token is appended so need one more | |
if idx == 0: | |
tgt_len += 1 | |
src_len = min_length + idx + 1 | |
expected_shape = ( | |
batch_size * num_beam_groups, | |
config.num_attention_heads, | |
tgt_len, | |
src_len, | |
) | |
# check attn size | |
self.assertListEqual( | |
[layer_attention.shape for layer_attention in iter_attentions], | |
[expected_shape] * len(iter_attentions), | |
) | |
def test_model_from_pretrained(self): | |
for model_name in XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = XLNetModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class XLNetModelLanguageGenerationTest(unittest.TestCase): | |
def test_lm_generate_xlnet_base_cased(self): | |
model = XLNetLMHeadModel.from_pretrained("xlnet-base-cased") | |
model.to(torch_device) | |
# fmt: off | |
input_ids = torch.tensor( | |
[ | |
[ | |
67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3, | |
] | |
], | |
dtype=torch.long, | |
device=torch_device, | |
) | |
# fmt: on | |
# In 1991, the remains of Russian Tsar Nicholas II and his family | |
# (except for Alexei and Maria) are discovered. | |
# The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the | |
# remainder of the story. 1883 Western Siberia, | |
# a young Grigori Rasputin is asked by his father and a group of men to perform magic. | |
# Rasputin has a vision and denounces one of the men as a horse thief. Although his | |
# father initially slaps him for making such an accusation, Rasputin watches as the | |
# man is chased outside and beaten. Twenty years later, Rasputin sees a vision of | |
# the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, | |
# with people, even a bishop, begging for his blessing. """ | |
# fmt: off | |
expected_output_ids = [ | |
67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3, 19, 12943, 4354, 153, 27, 442, 22, 2771, 4901, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771, | |
] | |
# fmt: on | |
# In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) | |
# are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, | |
# narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin | |
# is asked by his father and a group of men to perform magic. Rasputin has a vision and | |
# denounces one of the men as a horse thief. Although his father initially slaps | |
# him for making such an accusation, Rasputin watches as the man is chased outside and beaten. | |
# Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. | |
# Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. | |
# <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary. | |
# He is asked to perform a ritual of the Virgin Mary. He is asked to perform | |
output_ids = model.generate(input_ids, max_length=200, do_sample=False) | |
self.assertListEqual(output_ids[0].tolist(), expected_output_ids) | |