import numpy as np import os import torch from visualize.joints2smpl.src import config import smplx import h5py from visualize.joints2smpl.src.smplify import SMPLify3D from tqdm import tqdm import utils.rotation_conversions as geometry import argparse class joints2smpl: def __init__(self, num_frames, device_id, cuda=True): self.device = torch.device("cuda:" + str(device_id) if cuda else "cpu") # self.device = torch.device("cpu") self.batch_size = num_frames self.num_joints = 22 # for HumanML3D self.joint_category = "AMASS" self.num_smplify_iters = 150 self.fix_foot = False print(config.SMPL_MODEL_DIR) smplmodel = smplx.create(config.SMPL_MODEL_DIR, model_type="smpl", gender="neutral", ext="pkl", batch_size=self.batch_size).to(self.device) # ## --- load the mean pose as original ---- smpl_mean_file = config.SMPL_MEAN_FILE file = h5py.File(smpl_mean_file, 'r') self.init_mean_pose = torch.from_numpy(file['pose'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) self.init_mean_shape = torch.from_numpy(file['shape'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) self.cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).unsqueeze(0).to(self.device) # # # #-------------initialize SMPLify self.smplify = SMPLify3D(smplxmodel=smplmodel, batch_size=self.batch_size, joints_category=self.joint_category, num_iters=self.num_smplify_iters, device=self.device) def npy2smpl(self, npy_path): out_path = npy_path.replace('.npy', '_rot.npy') motions = np.load(npy_path, allow_pickle=True)[None][0] # print_batch('', motions) n_samples = motions['motion'].shape[0] all_thetas = [] for sample_i in tqdm(range(n_samples)): thetas, _ = self.joint2smpl(motions['motion'][sample_i].transpose(2, 0, 1)) # [nframes, njoints, 3] all_thetas.append(thetas.cpu().numpy()) motions['motion'] = np.concatenate(all_thetas, axis=0) print('motions', motions['motion'].shape) print(f'Saving [{out_path}]') np.save(out_path, motions) exit() def joint2smpl(self, input_joints, init_params=None): _smplify = self.smplify # if init_params is None else self.smplify_fast pred_pose = torch.zeros(self.batch_size, 72).to(self.device) pred_betas = torch.zeros(self.batch_size, 10).to(self.device) pred_cam_t = torch.zeros(self.batch_size, 3).to(self.device) keypoints_3d = torch.zeros(self.batch_size, self.num_joints, 3).to(self.device) # run the whole seqs num_seqs = input_joints.shape[0] # joints3d = input_joints[idx] # *1.2 #scale problem [check first] keypoints_3d = torch.Tensor(input_joints).to(self.device).float() # if idx == 0: if init_params is None: pred_betas = self.init_mean_shape pred_pose = self.init_mean_pose pred_cam_t = self.cam_trans_zero else: pred_betas = init_params['betas'] pred_pose = init_params['pose'] pred_cam_t = init_params['cam'] if self.joint_category == "AMASS": confidence_input = torch.ones(self.num_joints) # make sure the foot and ankle if self.fix_foot == True: confidence_input[7] = 1.5 confidence_input[8] = 1.5 confidence_input[10] = 1.5 confidence_input[11] = 1.5 else: print("Such category not settle down!") new_opt_vertices, new_opt_joints, new_opt_pose, new_opt_betas, \ new_opt_cam_t, new_opt_joint_loss = _smplify( pred_pose.detach(), pred_betas.detach(), pred_cam_t.detach(), keypoints_3d, conf_3d=confidence_input.to(self.device), # seq_ind=idx ) thetas = new_opt_pose.reshape(self.batch_size, 24, 3) thetas = geometry.matrix_to_rotation_6d(geometry.axis_angle_to_matrix(thetas)) # [bs, 24, 6] root_loc = torch.tensor(keypoints_3d[:, 0]) # [bs, 3] root_loc = torch.cat([root_loc, torch.zeros_like(root_loc)], dim=-1).unsqueeze(1) # [bs, 1, 6] thetas = torch.cat([thetas, root_loc], dim=1).unsqueeze(0).permute(0, 2, 3, 1) # [1, 25, 6, 196] return thetas.clone().detach(), {'pose': new_opt_joints[0, :24].flatten().clone().detach(), 'betas': new_opt_betas.clone().detach(), 'cam': new_opt_cam_t.clone().detach()} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--input_path", type=str, required=True, help='Blender file or dir with blender files') parser.add_argument("--cuda", type=bool, default=True, help='') parser.add_argument("--device", type=int, default=0, help='') params = parser.parse_args() simplify = joints2smpl(device_id=params.device, cuda=params.cuda) if os.path.isfile(params.input_path) and params.input_path.endswith('.npy'): simplify.npy2smpl(params.input_path) elif os.path.isdir(params.input_path): files = [os.path.join(params.input_path, f) for f in os.listdir(params.input_path) if f.endswith('.npy')] for f in files: simplify.npy2smpl(f)