from typing import Iterator import gradio as gr import torch from model import get_input_token_length, run DEFAULT_SYSTEM_PROMPT = """\ You are a helpful assistant who has a very narrow scope of knowledge: Pharmaceutical Claims data with access to actual Pharmaceutical Claims data. Do not answer questions you do not know. Respond exactly with '''I'm not trained in that area''' for any questions not related to claims data.\ """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = 4000 DESCRIPTION = """ # Vern Bot Testing Vern Bot below """ LICENSE = """
--- As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += '\nRunning on CPU đĨļ This demo does not work on CPU.
' def clear_and_save_textbox(message: str) -> tuple[str, str]: return '', message def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]: history.append((message, '')) return history def delete_prev_fn( history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: try: message, _ = history.pop() except IndexError: message = '' return history, message or '' def generate( message: str, history_with_input: list[tuple[str, str]], system_prompt: str, max_new_tokens: int, temperature: float, top_p: float, top_k: int, ) -> Iterator[list[tuple[str, str]]]: if max_new_tokens > MAX_MAX_NEW_TOKENS: raise ValueError #history = history_with_input[:-1] history = [] generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k) try: first_response = next(generator) yield history + [(message, first_response)] except StopIteration: yield history + [(message, '')] for response in generator: yield history + [(message, response)] def process_example(message: str) -> tuple[str, list[tuple[str, str]]]: generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50) for x in generator: pass return '', x def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None: input_token_length = get_input_token_length(message, chat_history, system_prompt) if input_token_length > MAX_INPUT_TOKEN_LENGTH: raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.') with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value='', elem_id='') with gr.Group(): chatbot = gr.Chatbot(label='Chatbot') with gr.Row(): textbox = gr.Textbox( container=False, show_label=False, placeholder='Type a message...', scale=10, ) submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('đ Retry', variant='secondary') undo_button = gr.Button('âŠī¸ Undo', variant='secondary') clear_button = gr.Button('đī¸ Clear', variant='secondary') saved_input = gr.State() with gr.Accordion(label='Advanced options', open=False): system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=6) max_new_tokens = gr.Slider( label='Max new tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) temperature = gr.Slider( label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.0, ) top_p = gr.Slider( label='Top-p (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.95, ) top_k = gr.Slider( label='Top-k', minimum=1, maximum=1000, step=1, value=50, ) gr.Examples( examples=[ 'Hello there! How are you doing?', 'Can you explain briefly to me what is the Python programming language?', 'Explain the plot of Cinderella in a sentence.', 'How many hours does it take a man to eat a Helicopter?', "Write a 100-word article on 'Benefits of Open-Source in AI research'", ], inputs=textbox, outputs=[textbox, chatbot], fn=process_example, cache_examples=True, ) gr.Markdown(LICENSE) textbox.submit( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) button_event_preprocess = submit_button.click( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=lambda x: x, inputs=[saved_input], outputs=textbox, api_name=False, queue=False, ) clear_button.click( fn=lambda: ([], ''), outputs=[chatbot, saved_input], queue=False, api_name=False, ) demo.queue(max_size=20).launch()