ACE-Step / music_dcae /music_dcae_pipeline.py
Sayoyo's picture
[fix] fix some bugs
71922e7
import os
import torch
from diffusers import AutoencoderDC
import torchaudio
import torchvision.transforms as transforms
from diffusers.models.modeling_utils import ModelMixin
from diffusers.loaders import FromOriginalModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
try:
from .music_vocoder import ADaMoSHiFiGANV1
except ImportError:
from music_vocoder import ADaMoSHiFiGANV1
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
DEFAULT_PRETRAINED_PATH = os.path.join(root_dir, "checkpoints", "music_dcae_f8c8")
VOCODER_PRETRAINED_PATH = os.path.join(root_dir, "checkpoints", "music_vocoder")
class MusicDCAE(ModelMixin, ConfigMixin, FromOriginalModelMixin):
@register_to_config
def __init__(self, source_sample_rate=None, dcae_checkpoint_path=DEFAULT_PRETRAINED_PATH, vocoder_checkpoint_path=VOCODER_PRETRAINED_PATH):
super(MusicDCAE, self).__init__()
self.dcae = AutoencoderDC.from_pretrained(dcae_checkpoint_path)
self.vocoder = ADaMoSHiFiGANV1.from_pretrained(vocoder_checkpoint_path)
if source_sample_rate is None:
source_sample_rate = 48000
self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
self.transform = transforms.Compose([
transforms.Normalize(0.5, 0.5),
])
self.min_mel_value = -11.0
self.max_mel_value = 3.0
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000)))
self.mel_chunk_size = 1024
self.time_dimention_multiple = 8
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple
self.scale_factor = 0.1786
self.shift_factor = -1.9091
def load_audio(self, audio_path):
audio, sr = torchaudio.load(audio_path)
return audio, sr
def forward_mel(self, audios):
mels = []
for i in range(len(audios)):
image = self.vocoder.mel_transform(audios[i])
mels.append(image)
mels = torch.stack(mels)
return mels
@torch.no_grad()
def encode(self, audios, audio_lengths=None, sr=None):
if audio_lengths is None:
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0])
audio_lengths = audio_lengths.to(audios.device)
# audios: N x 2 x T, 48kHz
device = audios.device
dtype = audios.dtype
if sr is None:
sr = 48000
resampler = self.resampler
else:
resampler = torchaudio.transforms.Resample(sr, 44100).to(device).to(dtype)
audio = resampler(audios)
max_audio_len = audio.shape[-1]
if max_audio_len % (8 * 512) != 0:
audio = torch.nn.functional.pad(audio, (0, 8 * 512 - max_audio_len % (8 * 512)))
mels = self.forward_mel(audio)
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value)
mels = self.transform(mels)
latents = []
for mel in mels:
latent = self.dcae.encoder(mel.unsqueeze(0))
latents.append(latent)
latents = torch.cat(latents, dim=0)
latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
latents = (latents - self.shift_factor) * self.scale_factor
return latents, latent_lengths
@torch.no_grad()
def decode(self, latents, audio_lengths=None, sr=None):
latents = latents / self.scale_factor + self.shift_factor
pred_wavs = []
for latent in latents:
mels = self.dcae.decoder(latent.unsqueeze(0))
mels = mels * 0.5 + 0.5
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value
wav = self.vocoder.decode(mels[0]).squeeze(1)
if sr is not None:
resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
wav = resampler(wav)
else:
sr = 44100
pred_wavs.append(wav)
if audio_lengths is not None:
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
return sr, pred_wavs
def forward(self, audios, audio_lengths=None, sr=None):
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr)
return sr, pred_wavs, latents, latent_lengths
if __name__ == "__main__":
audio, sr = torchaudio.load("test.wav")
audio_lengths = torch.tensor([audio.shape[1]])
audios = audio.unsqueeze(0)
# test encode only
model = MusicDCAE()
# latents, latent_lengths = model.encode(audios, audio_lengths)
# print("latents shape: ", latents.shape)
# print("latent_lengths: ", latent_lengths)
# test encode and decode
sr, pred_wavs, latents, latent_lengths = model(audios, audio_lengths, sr)
print("reconstructed wavs: ", pred_wavs[0].shape)
print("latents shape: ", latents.shape)
print("latent_lengths: ", latent_lengths)
print("sr: ", sr)
torchaudio.save("test_reconstructed.flac", pred_wavs[0], sr)
print("test_reconstructed.flac")