Spaces:
Running
Running
import os | |
import torch | |
from diffusers import AutoencoderDC | |
import torchaudio | |
import torchvision.transforms as transforms | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.loaders import FromOriginalModelMixin | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
try: | |
from .music_vocoder import ADaMoSHiFiGANV1 | |
except ImportError: | |
from music_vocoder import ADaMoSHiFiGANV1 | |
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
DEFAULT_PRETRAINED_PATH = os.path.join(root_dir, "checkpoints", "music_dcae_f8c8") | |
VOCODER_PRETRAINED_PATH = os.path.join(root_dir, "checkpoints", "music_vocoder") | |
class MusicDCAE(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
def __init__(self, source_sample_rate=None, dcae_checkpoint_path=DEFAULT_PRETRAINED_PATH, vocoder_checkpoint_path=VOCODER_PRETRAINED_PATH): | |
super(MusicDCAE, self).__init__() | |
self.dcae = AutoencoderDC.from_pretrained(dcae_checkpoint_path) | |
self.vocoder = ADaMoSHiFiGANV1.from_pretrained(vocoder_checkpoint_path) | |
if source_sample_rate is None: | |
source_sample_rate = 48000 | |
self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100) | |
self.transform = transforms.Compose([ | |
transforms.Normalize(0.5, 0.5), | |
]) | |
self.min_mel_value = -11.0 | |
self.max_mel_value = 3.0 | |
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000))) | |
self.mel_chunk_size = 1024 | |
self.time_dimention_multiple = 8 | |
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple | |
self.scale_factor = 0.1786 | |
self.shift_factor = -1.9091 | |
def load_audio(self, audio_path): | |
audio, sr = torchaudio.load(audio_path) | |
return audio, sr | |
def forward_mel(self, audios): | |
mels = [] | |
for i in range(len(audios)): | |
image = self.vocoder.mel_transform(audios[i]) | |
mels.append(image) | |
mels = torch.stack(mels) | |
return mels | |
def encode(self, audios, audio_lengths=None, sr=None): | |
if audio_lengths is None: | |
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0]) | |
audio_lengths = audio_lengths.to(audios.device) | |
# audios: N x 2 x T, 48kHz | |
device = audios.device | |
dtype = audios.dtype | |
if sr is None: | |
sr = 48000 | |
resampler = self.resampler | |
else: | |
resampler = torchaudio.transforms.Resample(sr, 44100).to(device).to(dtype) | |
audio = resampler(audios) | |
max_audio_len = audio.shape[-1] | |
if max_audio_len % (8 * 512) != 0: | |
audio = torch.nn.functional.pad(audio, (0, 8 * 512 - max_audio_len % (8 * 512))) | |
mels = self.forward_mel(audio) | |
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value) | |
mels = self.transform(mels) | |
latents = [] | |
for mel in mels: | |
latent = self.dcae.encoder(mel.unsqueeze(0)) | |
latents.append(latent) | |
latents = torch.cat(latents, dim=0) | |
latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long() | |
latents = (latents - self.shift_factor) * self.scale_factor | |
return latents, latent_lengths | |
def decode(self, latents, audio_lengths=None, sr=None): | |
latents = latents / self.scale_factor + self.shift_factor | |
pred_wavs = [] | |
for latent in latents: | |
mels = self.dcae.decoder(latent.unsqueeze(0)) | |
mels = mels * 0.5 + 0.5 | |
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value | |
wav = self.vocoder.decode(mels[0]).squeeze(1) | |
if sr is not None: | |
resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype) | |
wav = resampler(wav) | |
else: | |
sr = 44100 | |
pred_wavs.append(wav) | |
if audio_lengths is not None: | |
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)] | |
return sr, pred_wavs | |
def forward(self, audios, audio_lengths=None, sr=None): | |
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr) | |
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr) | |
return sr, pred_wavs, latents, latent_lengths | |
if __name__ == "__main__": | |
audio, sr = torchaudio.load("test.wav") | |
audio_lengths = torch.tensor([audio.shape[1]]) | |
audios = audio.unsqueeze(0) | |
# test encode only | |
model = MusicDCAE() | |
# latents, latent_lengths = model.encode(audios, audio_lengths) | |
# print("latents shape: ", latents.shape) | |
# print("latent_lengths: ", latent_lengths) | |
# test encode and decode | |
sr, pred_wavs, latents, latent_lengths = model(audios, audio_lengths, sr) | |
print("reconstructed wavs: ", pred_wavs[0].shape) | |
print("latents shape: ", latents.shape) | |
print("latent_lengths: ", latent_lengths) | |
print("sr: ", sr) | |
torchaudio.save("test_reconstructed.flac", pred_wavs[0], sr) | |
print("test_reconstructed.flac") | |