import os import time import torch import gradio as gr from strings import TITLE, ABSTRACT from gen import get_pretrained_models, get_output, setup_model_parallel os.environ["RANK"] = "0" os.environ["WORLD_SIZE"] = "1" os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = "50505" local_rank, world_size = setup_model_parallel() generator = get_pretrained_models("7B", "tokenizer", local_rank, world_size) history = [] def chat(user_input, top_p, temperature, max_gen_len, state_chatbot): bot_response = get_output( generator=generator, prompt=user_input, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p) # remove the first phrase identical to user prompt bot_response = bot_response[0][len(user_input):] bot_response = bot_response.replace("\n", "

") # trip the last phrase try: bot_response = bot_response[:bot_response.rfind(".")] except: pass history.append({ "role": "user", "content": user_input }) history.append({ "role": "system", "content": bot_response }) state_chatbot = state_chatbot + [(user_input, None)] response = "" for word in bot_response.split(" "): time.sleep(0.1) response += word + " " current_pair = (user_input, response) state_chatbot[-1] = current_pair yield state_chatbot, state_chatbot def reset_textbox(): return gr.update(value='') with gr.Blocks(css = """#col_container {width: 95%; margin-left: auto; margin-right: auto;} #chatbot {height: 400px; overflow: auto;}""") as demo: state_chatbot = gr.State([]) with gr.Column(elem_id='col_container'): gr.Markdown(f"## {TITLE}\n\n\n\n{ABSTRACT}") chatbot = gr.Chatbot(elem_id='chatbot') textbox = gr.Textbox(placeholder="Enter a prompt") with gr.Accordion("Parameters", open=False): max_gen_len = gr.Slider(minimum=20, maximum=512, value=256, step=1, interactive=True, label="Max Genenration Length",) top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) textbox.submit(chat, [textbox, top_p, temperature, max_gen_len, state_chatbot], [state_chatbot, chatbot]) textbox.submit(reset_textbox, [], [textbox]) demo.queue(api_open=False).launch()