import gradio as gr import hashlib import tempfile import requests import pandas as pd from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer def fx(x:str): hash=hashlib.md5() hash.update(x.encode(encoding='utf-8')) return hash.hexdigest() manager = ModelManager() model_path, config_path, model_item = manager.download_model("tts_models/zh-CN/baker/tacotron2-DDC-GST") synthesizer = Synthesizer( model_path, config_path, None, None, None, ) def inference(text: str): wavs = synthesizer.tts(text) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: synthesizer.save_wav(wavs, fp) return fp.name def fx_m(s:str): headers= {"Content-Type": "application/json"} url="https://m-formatter.azurewebsites.net/api/v2" data={'code':s,'resultType':'text'} respose=requests.post(url,json=data,headers=headers) ms=respose.json() return ms['result'] def fx_dax(s:str): url="https://www.daxformatter.com/" data = {"embed":"1","l":"short","fx":s} ct=requests.post(url = url,data = data) html=ct.text s1=html.split('
')[1] s2='
'+s1.split('万剑归宗' return s2 def fx_datatable(s:str): a=exec(s) return {k: v for k, v in locals().items() if isinstance(v,pd.DataFrame)} def fx_dd(tk:str,s:str): headers= {"Content-Type": "application/json"} url="https://oapi.dingtalk.com/robot/send?access_token="+tk data={'msgtype':'text','text':{'title': '吹牛逼',"content": s}, 'at': {'atMobiles': [], 'isAtAll': True}} response=requests.post(url,json=data,headers=headers) return response.text def dd_ocr(tk:str,sl:str,dt:str): headers= {"Content-Type": "application/json"} url="https://oapi.dingtalk.com/topapi/ocr/structured/recognize?access_token="+tk dc={"身份证":"idcard","增值税发票":"invoice","营业执照":"blicense","银行卡":"bank_card","车牌":"car_no","机动车发票":"car_invoice","驾驶证":"driving_license","行驶证":"vehicle_license","火车票":"train_ticket","定额发票":"quota_invoice","出租车发票":"taxi_ticket","机票行程单":"air_itinerary","审批表单":"approval_table","花名册":"roster"} data={"image_url":sl,"type":dc[dt]} response=requests.post(url,json=data,headers=headers) return response.json() demo=gr.Blocks() with demo: with gr.Tabs(): with gr.TabItem("测试1"): with gr.Column(): text_input=gr.Textbox(placeholder='请输入测试字符串',label="请输入需要MD5加密的测试内容") text_output=gr.Textbox(label="输出",visible=False) text_input.change(fn=lambda visible: gr.update(visible=True), inputs=text_input, outputs=text_output) bb_button=gr.Button("运行") bb_button.click(fx, inputs=text_input, outputs=text_output,api_name='md5') with gr.Column(): gr.Markdown("# TTS文本字符串转语音合成训练") TTS_input=gr.Textbox(label="输入文本",default="你好吗?我很好。") TTS_button=gr.Button("合成") TTS_button.click(inference, inputs=TTS_input, outputs=gr.Audio(label="输出合成结果"),api_name='tts') with gr.TabItem("M-Formatter"): gr.Markdown("# PowerQuery M语言脚本格式化测试") M_input=gr.Textbox(label="请填写需要格式化的M脚本",default="let a=1,b=2 in a+b",lines=18) M_output=gr.Textbox(label="格式化结果",lines=50) M_button=gr.Button("开始格式化>>") M_button.click(fx_m, inputs=M_input, outputs=M_output,api_name='M') with gr.TabItem("DAX-Formatter"): gr.Markdown("# DAX表达式格式化测试") with gr.Row(): DAX_input=gr.Textbox(label="请填写需要格式化的DAX表达式",default="扯淡=CALCULATE(VALUES('价格表'[单价]),FILTER('价格表','价格表'[产品]='销售表'[产品]))",lines=28) DAX_button=gr.Button("格式化>>") DAX_output=gr.HTML(label="DAX表达式格式化结果") DAX_button.click(fx_dax, inputs=DAX_input, outputs=DAX_output,api_name='DAX') with gr.TabItem("Python-Execute"): gr.Markdown("# Python脚本测试") d_input=gr.Textbox(label="请填写需要datatable库处理的脚本",lines=18) d_output=gr.JSON(label="输出>") d_button=gr.Button("开始编译>>") d_button.click(fx_datatable, inputs=d_input, outputs=d_output,api_name='datatable') with gr.TabItem("钉钉群消息推送"): gr.Markdown("# 推送测试") dd_input=[gr.Textbox(label="请填写机器人token"),gr.Textbox(label="请填写需要推送的信息",lines=10)] dd_output=gr.Textbox(label="推送提示") dd_button=gr.Button("提交") dd_button.click(fx_dd, inputs=dd_input, outputs=dd_output,api_name='dingding_robot') with gr.TabItem("钉钉ocr"): gr.Markdown("# 网络图片OCR识别") ocr_input=[gr.Textbox(label="请填写ocr_token"),gr.Textbox(label="请填写图片网址"),gr.Radio(["身份证","增值税发票","营业执照","银行卡","车牌","机动车发票","驾驶证","行驶证","火车票","定额发票","出租车发票","机票行程单","审批表单","花名册"],"营业执照增值税发票",label="请选择识别类型:")] ocr_button=gr.Button("开始识别>>") ocr_output=gr.JSON(label="识别结果") ocr_button.click(fx_dd, inputs=ocr_input, outputs=ocr_output,api_name='dingding_ocr') demo.launch()