Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
|
@@ -1,18 +1,13 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
| 14 |
-
title="Hot Dog? Or Not?",
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
if __name__ == "__main__":
|
| 18 |
-
gradio_app.launch()
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
+
classifier = pipeline('image-classification', model = "computer_partsclassifier-model")import numpy as np
|
| 3 |
|
| 4 |
+
def image_classifier(inp):
|
| 5 |
+
confidence_scores = np.random.rand(3)
|
| 6 |
+
confidence_scores/= np.sum(confidence_scores)
|
| 7 |
+
classes= ['cable','case', 'cpu']
|
| 8 |
+
result= {classes[i]: confidence_scores[i] for i in range(3)}
|
| 9 |
+
return result
|
| 10 |
|
| 11 |
+
import gradio as gr
|
| 12 |
+
demo = gr.Interface(fn=image_classifier, inputs = "image", outputs = "label")
|
| 13 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|