# utils/model_utils.py import torch import torch.nn as nn from torchvision.models import densenet121, DenseNet121_Weights # Disease labels DISEASE_LIST = [ 'Atelectasis', 'Cardiomegaly', 'Consolidation', 'Edema', 'Effusion', 'Emphysema', 'Fibrosis', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Pleural_Thickening', 'Pneumonia', 'Pneumothorax' ] # Load trained CheXNet model class CheXNet(nn.Module): def __init__(self, num_classes=14): super().__init__() base_model = densenet121(weights=DenseNet121_Weights.IMAGENET1K_V1) self.features = base_model.features self.classifier = nn.Linear(base_model.classifier.in_features, num_classes) def forward(self, x): x = self.features(x) x = nn.functional.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) return self.classifier(x) def load_model(url, device): model_path = "dannynet.pth" torch.hub.download_url_to_file(url,model_path) model = torch.load(model_path, map_location = device) model.eval() return model def predict(model, img_tensor, device): with torch.no_grad(): output = model(img_tensor.unsqueeze(0).to(device)) probs = torch.sigmoid(output[0]).cpu().numpy() return dict(zip(DISEASE_LIST, probs))