# app.py import streamlit as st from PIL import Image import torch from utils.model_utils import load_model, predict from utils.preprocessing import preprocess_image st.set_page_config(page_title="X-ray Diagnosis Demo", layout="centered") st.title("🩻 X-ray Multi-Label Diagnosis App (CheXNet)") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = "model/dannynet-55-best_model_20250422-211522.pth" model = load_model(model_path, device) uploaded_file = st.file_uploader("Upload a chest X-ray", type=["jpg", "jpeg", "png"]) if uploaded_file: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded X-ray", use_column_width=True) img_tensor = preprocess_image(image) probs = predict(model, img_tensor, device) st.subheader("Predictions") for disease, prob in probs.items(): st.write(f"**{disease}**: {prob:.4f}")