# ########################################################################### # # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP) # (C) Cloudera, Inc. 2022 # All rights reserved. # # Applicable Open Source License: Apache 2.0 # # NOTE: Cloudera open source products are modular software products # made up of hundreds of individual components, each of which was # individually copyrighted. Each Cloudera open source product is a # collective work under U.S. Copyright Law. Your license to use the # collective work is as provided in your written agreement with # Cloudera. Used apart from the collective work, this file is # licensed for your use pursuant to the open source license # identified above. # # This code is provided to you pursuant a written agreement with # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute # this code. If you do not have a written agreement with Cloudera nor # with an authorized and properly licensed third party, you do not # have any rights to access nor to use this code. # # Absent a written agreement with Cloudera, Inc. (“Cloudera”) to the # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU, # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF # DATA. # # ########################################################################### from typing import List import torch import pandas as pd from transformers import ( AutoTokenizer, AutoModel, AutoModelForSequenceClassification, ) class ContentPreservationScorer: """ Utility for calculating Content Preservation Score between two pieces of text (i.e. input and output of TST model). This custom evaluation metric aims to quantify content preservation by first modifying text to remove all style-related tokens leaving just content related tokens behind. Style tokens are determind on a sentence-by-sentence basis by extracting out salient token attributions from a trained Style Classifier (BERT) so contextual information is perserved in the attribution scores. Style tokens are then masked/removed from the text. We pass the style-less sentences through a pre-trained, but not fine-tuned SentenceBert model to compute sentence embeddings. Cosine similarity on the embeddings produces a score that should represent content preservation. PSUEDO-CODE: (higher score is better preservation) 1. mask out style tokens for input and output text (1str) 2. get SBERT embedddings for each (multi) 3. calculate cosine similarity (multi pairs) Attributes: cls_model_identifier (str) sbert_model_identifier (str) """ def __init__(self, cls_model_identifier: str, sbert_model_identifier: str): self.cls_model_identifier = cls_model_identifier self.sbert_model_identifier = sbert_model_identifier self.device = ( torch.cuda.current_device() if torch.cuda.is_available() else "cpu" ) self._initialize_hf_artifacts() def _initialize_hf_artifacts(self): """ Initialize a HuggingFace artifacts (tokenizer and model) according to the provided identifiers for both SBert and the classification model. Then initialize the word attribution explainer with the HF model+tokenizer. """ # sbert self.sbert_tokenizer = AutoTokenizer.from_pretrained( self.sbert_model_identifier ) self.sbert_model = AutoModel.from_pretrained(self.sbert_model_identifier) # classifer self.cls_tokenizer = AutoTokenizer.from_pretrained(self.cls_model_identifier) self.cls_model = AutoModelForSequenceClassification.from_pretrained( self.cls_model_identifier ) self.cls_model.to(self.device) def compute_sentence_embeddings(self, input_text: List[str]) -> torch.Tensor: """ Compute sentence embeddings for each sentence provided a list of text strings. Args: input_text (List[str]) - list of input sentences to encode Returns: sentence_embeddings (torch.Tensor) """ # tokenize sentences encoded_input = self.sbert_tokenizer( input_text, padding=True, truncation=True, max_length=256, return_tensors="pt", ) # to device self.sbert_model.eval() self.sbert_model.to(self.device) encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()} # compute token embeddings with torch.no_grad(): model_output = self.sbert_model(**encoded_input) return ( self.mean_pooling(model_output, encoded_input["attention_mask"]) .detach() .cpu() ) def calculate_content_preservation_score( self, input_text: List[str], output_text: List[str], threshold: float = 0.3, mask_type: str = "pad", return_all: bool = False, ) -> List[float]: """ Calcualates the content preservation score (CPS) between two pieces of text. Args: input_text (list) - list of input texts with indicies corresponding to counterpart in output_text ouptput_text (list) - list of output texts with indicies corresponding to counterpart in input_text return_all (bool) - If true, return dict containing intermediate text with style masking applied, along with scores mask_type (str) - "pad", "remove", or "none" Returns: A list of floats with corresponding content preservation scores. PSUEDO-CODE: (higher score is better preservation) 1. mask out style tokens for input and output text (1str) 2. get SBERT embedddings for each (multi) 3. calculate cosine similarity (multi pairs) """ if len(input_text) != len(output_text): raise ValueError( "input_text and output_text must be of same length with corresponding items" ) if mask_type != "none": # Mask out style tokens masked_input_text = [ self.mask_style_tokens(text, mask_type=mask_type, threshold=threshold) for text in input_text ] masked_output_text = [ self.mask_style_tokens(text, mask_type=mask_type, threshold=threshold) for text in output_text ] # Compute SBert embeddings input_embeddings = self.compute_sentence_embeddings(masked_input_text) output_embeddings = self.compute_sentence_embeddings(masked_output_text) else: # Compute SBert embeddings on unmasked text input_embeddings = self.compute_sentence_embeddings(input_text) output_embeddings = self.compute_sentence_embeddings(output_text) # Calculate cosine similarity scores = self.cosine_similarity(input_embeddings, output_embeddings) if return_all: output = { "scores": scores, "masked_input_text": masked_input_text if mask_type != "none" else input_text, "masked_output_text": masked_output_text if mask_type != "none" else output_text, } return output else: return scores def calculate_feature_attribution_scores( self, text: str, class_index: int = 0, as_norm: bool = False ) -> List[tuple]: """ Calcualte feature attributions using integrated gradients by passing a string of text as input. Args: text (str) - text to get attributions for class_index (int) - Optional output index to provide attributions for """ attributions = self.explainer(text, index=class_index) if as_norm: return self.format_feature_attribution_scores(attributions) return attributions def mask_style_tokens( self, text: str, threshold: float = 0.3, mask_type: str = "pad", class_index: int = 0, ) -> str: """ Utility function to mask out style tokens from a given string of text. Style tokens are determined by first calculating feature importances (via word attributions from trained StyleClassifer) for each token in the input sentence. We then normalize the absolute values of attributions scores to see how much each token contributes as a percentage overall style classification and rank those in descending order. We then select the top N tokens that account for the cumulative _threshold_ amount (%) of total styleattribution. By using cumulative percentages, N is not a fixed number and we ultimately take however many tokens are needed to account for _threshold_ % of the overall style. We can optionally return a string with these style tokens padded out or completely removed by toggling _mask_type_ between "pad" and "remove". Args: text (str) threshold (float) - percentage of style attribution as cutoff for masking selection. mask_type (str) - "pad" or "remove", indicates how to handle style tokens class_index (str) Returns: text (str) """ # get attributions and format as sorted dataframe attributions = self.calculate_feature_attribution_scores( text, class_index=class_index, as_norm=False ) attributions_df = self.format_feature_attribution_scores(attributions) # select tokens to mask token_idxs_to_mask = [] # If the first token accounts for more than the set # threshold, take just that token to mask. Otherwise, # take all tokens up to the threshold if attributions_df.iloc[0]["cumulative"] > threshold: token_idxs_to_mask.append(attributions_df.index[0]) else: token_idxs_to_mask.extend( attributions_df[ attributions_df["cumulative"] <= threshold ].index.to_list() ) # Build text sequence with tokens masked out mask_map = {"pad": "[PAD]", "remove": ""} toks = [token for token, score in attributions] for idx in token_idxs_to_mask: toks[idx] = mask_map[mask_type] if mask_type == "remove": toks = [token for token in toks if token != ""] # Decode that sequence masked_text = self.explainer.tokenizer.decode( self.explainer.tokenizer.convert_tokens_to_ids(toks), skip_special_tokens=False, ) # Remove special characters other than [PAD] for special_token in self.explainer.tokenizer.all_special_tokens: if special_token != "[PAD]": masked_text = masked_text.replace(special_token, "") return masked_text.strip() @staticmethod def format_feature_attribution_scores(attributions: List[tuple]) -> pd.DataFrame: """ Utility for formatting attribution scores for style token mask selection Sorts a given List[tuple] where tuples represent (token, score) by the normalized absolute value of each token score. """ df = pd.DataFrame(attributions, columns=["token", "score"]) df["abs_norm"] = df["score"].abs() / df["score"].abs().sum() df = df.sort_values(by="abs_norm", ascending=False) df["cumulative"] = df["abs_norm"].cumsum() return df @staticmethod def cosine_similarity(tensor1: torch.Tensor, tensor2: torch.Tensor) -> List[float]: """ Calculate cosine similarity on pairs of embedddings. Can handle 1D Tensor for single pair or 2D Tensors with corresponding indicies for matrix operation on multiple pairs. """ assert tensor1.shape == tensor2.shape # ensure 2D tensor if tensor1.ndim == 1: tensor1 = tensor1.unsqueeze(0) tensor2 = tensor2.unsqueeze(0) cos_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6) return [round(val, 4) for val in cos_sim(tensor1, tensor2).tolist()] @staticmethod def mean_pooling(model_output, attention_mask): """ Peform mean pooling over token embeddings to create sentence embedding. Here we take the attention mask into account for correct averaging on active token positions. CODE BORROWED FROM: https://www.sbert.net/examples/applications/computing-embeddings/README.html#sentence-embeddings-with-transformers """ token_embeddings = model_output[ 0 ] # First element of model_output contains all token embeddings input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask