import en_core_web_md nlp = en_core_web_md.load() #import spacy import re import numpy import tflearn import tensorflow import os def convert_txt_to_DataFrame(textFile): with open(textFile) as f: lines = f.readlines() # remove all '\n' characters in all lines lines = list(map(lambda x: x.strip('\n'), lines)) temp_dict = {} for x in lines: if '- -' in x: # add new key to dict temp_dict[x.strip('- -')] = [] for i, x in enumerate(lines): if '- -' in x: # '- -' = the question # ' -' = the answers, there could be multiple answers for 1 question # add the values(answers) to the question(key) of the dictionaries temp_dict[x.strip('- -')].append(lines[i+1].strip(' -')) return temp_dict #npl = spacy.load('en_core_web_md') def convert_to_list(file): data = convert_txt_to_DataFrame(file) question = [] temp_bag = [] ans = [] for x in data: ans.append(data[x]) x = re.sub(r'[^\w\s]', '', x) temp_bag.append(x) for x in temp_bag: x1 = nlp(x) temp = [] for z in x1: temp.append(z.lemma_) question.append(temp) return question,ans def addQuestion(file): name = str(file).strip('.txt') # print(f"\n\n{name}\n\n") temp_ques = {} temp_ans = {} ques, ans = convert_to_list(file) temp_ques[name] = ques temp_ans[name] = ans return (ml_data.update(temp_ques), ans_data.update(temp_ans)) ml_data = {} ans_data = {} addQuestion('hello.txt') addQuestion('how are you.txt') addQuestion('interest.txt') addQuestion('who are you.txt') addQuestion('you a robot.txt') addQuestion('tell me about yourself.txt') addQuestion('what language python.txt') addQuestion('What is AI.txt') addQuestion('Tell me a joke.txt') addQuestion('you are stupid.txt') addQuestion('Pollak Library.txt') addQuestion('Where is the building.txt') addQuestion('hungry.txt') addQuestion('What is your major.txt') addQuestion('free time.txt') addQuestion('I need help.txt') addQuestion('your food.txt') addQuestion('what time.txt') addQuestion('weather.txt') addQuestion('your job.txt') addQuestion('old.txt') addQuestion('love you.txt') addQuestion('shut up.txt') addQuestion('where is csuf.txt') addQuestion('csuf mascot.txt') addQuestion('school start.txt') addQuestion('golden gate.txt') addQuestion('trc.txt') addQuestion('gwpac.txt') addQuestion('lovelace.txt') addQuestion('bathroom.txt') addQuestion('starbucks.txt') addQuestion('workout.txt') addQuestion('tuffy.txt') addQuestion('mccarthy.txt') addQuestion('sgmh.txt') addQuestion('david.txt') addQuestion('microwave.txt') addQuestion('arboretum.txt') addQuestion('langdor.txt') addQuestion('restroom.txt') addQuestion('burger.txt') addQuestion('tsu.txt') addQuestion('park.txt') addQuestion('dan.txt') labels = [] for x in ml_data: labels.append(x) labels = sorted(labels) # labels words = [] for x in ml_data: for z in ml_data[x]: words.extend(z) words = sorted(list(set(words))) #source: https://www.techwithtim.net/tutorials/ai-chatbot/part-2/ out_empty = [0 for _ in range(len(labels))] training = [] output = [] for x, ques in enumerate(ml_data): print(f"question: {ques}\n\n") bag = [] wrds = [] for w in ml_data[ques]: wrds.extend(w) for w in words: if w in wrds: bag.append(1) print(f"{w} = 1") else: bag.append(0) # print(f"words: {w} = 0") output_row = out_empty[:] output_row[labels.index(ques)] = 1 print('\n', output_row) training.append(bag) output.append(output_row) print(labels) print("\n\n****\n\n") training = numpy.array(training) output = numpy.array(output) tensorflow.compat.v1.reset_default_graph() net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 32) net = tflearn.fully_connected(net, 32) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) model = tflearn.DNN(net) if os.path.exists('minh103.meta'): model.load('minh103') else: model = tflearn.DNN(net) model.fit(training, output, n_epoch=50000, batch_size=10, show_metric=True) model.save('minh103')