import en_core_web_md nlp = en_core_web_md.load() #import spacy import re import numpy import tflearn import tensorflow import os def convert_txt_to_DataFrame(textFile): with open(textFile) as f: lines = f.readlines() # remove all '\n' characters in all lines lines = list(map(lambda x: x.strip('\n'), lines)) temp_dict = {} for x in lines: if '- -' in x: # add new key to dict temp_dict[x.strip('- -')] = [] for i, x in enumerate(lines): if '- -' in x: # '- -' = the question # ' -' = the answers, there could be multiple answers for 1 question # add the values(answers) to the question(key) of the dictionaries temp_dict[x.strip('- -')].append(lines[i+1].strip(' -')) return temp_dict #npl = spacy.load('en_core_web_md') def convert_to_list(file): data = convert_txt_to_DataFrame(file) question = [] temp_bag = [] ans = [] for x in data: ans.append(data[x]) x = re.sub(r'[^\w\s]', '', x) temp_bag.append(x) for x in temp_bag: x1 = nlp(x) temp = [] for z in x1: temp.append(z.lemma_) question.append(temp) return question,ans def addQuestion(file): name = str(file).strip('.txt') # print(f"\n\n{name}\n\n") temp_ques = {} temp_ans = {} ques, ans = convert_to_list(file) temp_ques[name] = ques temp_ans[name] = ans return (ml_data.update(temp_ques), ans_data.update(temp_ans)) ml_data = {} ans_data = {} addQuestion('hello.txt') addQuestion('how are you.txt') addQuestion('interest.txt') labels = [] for x in ml_data: labels.append(x) labels = sorted(labels) # labels words = [] for x in ml_data: for z in ml_data[x]: words.extend(z) words = sorted(list(set(words))) #source: https://www.techwithtim.net/tutorials/ai-chatbot/part-2/ out_empty = [0 for _ in range(len(labels))] training = [] output = [] for x, ques in enumerate(ml_data): print(f"question: {ques}\n\n") bag = [] wrds = [] for w in ml_data[ques]: wrds.extend(w) for w in words: if w in wrds: bag.append(1) print(f"{w} = 1") else: bag.append(0) # print(f"words: {w} = 0") output_row = out_empty[:] output_row[labels.index(ques)] = 1 print('\n', output_row) training.append(bag) output.append(output_row) print(labels) print("\n\n****\n\n") training = numpy.array(training) output = numpy.array(output) tensorflow.compat.v1.reset_default_graph() net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) model = tflearn.DNN(net) if os.path.exists('minh103.meta'): model.load('minh103') else: model = tflearn.DNN(net) model.fit(training, output, n_epoch=20000, batch_size=10, show_metric=True) model.save('minh103')