Spaces:
Running
Running
File size: 1,620 Bytes
16e5bdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import argparse
import json
import time
from PIL import Image
import torch
from torchvision.transforms import transforms
import gradio as gr
parser = argparse.ArgumentParser(description="Image Classification")
parser.add_argument("-i", "--image_path", required=True, help="Path to the image file")
args = parser.parse_args()
model = torch.load('model.pth', map_location=torch.device('cpu'))
model.eval()
transform = transforms.Compose([
transforms.Resize((448, 448)),
transforms.ToTensor(),
transforms.Normalize(mean=[
0.48145466,
0.4578275,
0.40821073
], std=[
0.26862954,
0.26130258,
0.27577711
])
])
with open("tags_8041.json", "r") as file:
tags = json.load(file)
allowed_tags = sorted(tags)
allowed_tags.insert(0, "placeholder0")
allowed_tags.append("placeholder1")
allowed_tags.append("explicit")
allowed_tags.append("questionable")
allowed_tags.append("safe")
def create_tags(image):
img = image.convert('RGB')
tensor = transform(img).unsqueeze(0)
with torch.no_grad():
out = model(tensor)
probabilities = torch.nn.functional.sigmoid(out[0])
indices = torch.where(probabilities > 0.3)[0]
values = probabilities[indices]
temp = []
for i in range(indices.size(0)):
temp.append([allowed_tags[indices[i]], values[i].item()])
temp = sorted(temp, key=lambda x: x[1], reverse=True)
text = ""
for i in range(len(temp)):
text += temp[i][0] + (' ,' if i < len(temp) - 1 else '')
return text
demo = gr.Interface(
fn=create_tags,
inputs=["image"],
outputs=["text"],
)
demo.launch() |