Spaces:
Sleeping
Sleeping
import json | |
import time | |
from PIL import Image | |
import torch | |
from torchvision.transforms import transforms | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
snapshot_download(repo_id="Thouph/eva-vit-1b-224-8043", local_dir = "./") | |
model = torch.load('model.pth', map_location=torch.device('cpu')) | |
model.eval() | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[ | |
0.48145466, | |
0.4578275, | |
0.40821073 | |
], std=[ | |
0.26862954, | |
0.26130258, | |
0.27577711 | |
]) | |
]) | |
with open("tags_8040.json", "r") as file: | |
tags = json.load(file) | |
allowed_tags = sorted(tags) | |
allowed_tags.append("explicit") | |
allowed_tags.append("questionable") | |
allowed_tags.append("safe") | |
def create_tags(image): | |
img = image.convert('RGB') | |
tensor = transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
out = model(tensor) | |
probabilities = torch.nn.functional.sigmoid(out[0]) | |
indices = torch.where(probabilities > 0.3)[0] | |
values = probabilities[indices] | |
temp = [] | |
for i in range(indices.size(0)): | |
temp.append([allowed_tags[indices[i]], values[i].item()]) | |
text = "" | |
for i in range(len(temp)): | |
text += temp[i][0] + (', ' if i < len(temp) - 1 else '') | |
text.replace(r"placeholder1, ", "") | |
text.replace(r"_", " ") | |
text.replace("(", "\\(").replace(")", "\\)") | |
return text | |
demo = gr.Interface( | |
fn=create_tags, | |
inputs=[gr.Image(type="pil")], | |
outputs=["text"], | |
) | |
demo.launch() |