import os import torch import shutil import librosa import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt import torchvision.transforms as transforms from collections import Counter from model import EvalNet from PIL import Image from utils import * import warnings warnings.filterwarnings("ignore") def most_common_element(input_list): # 使用 Counter 统计每个元素的出现次数 counter = Counter(input_list) # 使用 most_common 方法获取出现次数最多的元素 most_common_element, _ = counter.most_common(1)[0] return most_common_element def wav_to_mel(audio_path: str, width=0.07): os.makedirs("./tmp", exist_ok=True) try: y, sr = librosa.load(audio_path, sr=48000) mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_mel_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_mel_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"./tmp/mel_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav_to_cqt(audio_path: str, width=0.07): os.makedirs("./tmp", exist_ok=True) try: y, sr = librosa.load(audio_path, sr=48000) cqt_spec = librosa.cqt(y=y, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_cqt_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_cqt_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"./tmp/cqt_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav_to_chroma(audio_path: str, width=0.07): os.makedirs("./tmp", exist_ok=True) try: y, sr = librosa.load(audio_path, sr=48000) chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_chroma_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_chroma_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"./tmp/chroma_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def embed_img(img_path, input_size=224): transform = transforms.Compose( [ transforms.Resize([input_size, input_size]), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) img = Image.open(img_path).convert("RGB") return transform(img).unsqueeze(0) def inference(wav_path, log_name, folder_path="./tmp"): if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: wav_path = "./examples/m_falsetto.wav" model = EvalNet(log_name).model spec = log_name.split("_")[-3] eval("wav_to_%s" % spec)(wav_path) outputs = [] all_files = os.listdir(folder_path) for file_name in all_files: if file_name.lower().endswith(".jpg"): file_path = os.path.join(folder_path, file_name) input = embed_img(file_path) output = model(input) pred_id = torch.max(output.data, 1)[1] outputs.append(pred_id) max_count_item = most_common_element(outputs) shutil.rmtree(folder_path) return os.path.basename(wav_path), translate[classes[max_count_item]] classes = ["m_chest", "f_chest", "m_falsetto", "f_falsetto"] models = get_modelist() translate = { "m_chest": "male chest voice", "f_chest": "female chest voice", "m_falsetto": "male falsetto voice", "f_falsetto": "female falsetto voice", } examples = [] example_wavs = find_wav_files() for wav in example_wavs: examples.append([wav, models[0]]) with gr.Blocks() as demo: gr.Markdown( """ **Please note: It may take longer to obtain recognition results when using the selected model for the first time, as downloading weights is required. Please be patient while waiting for the results.** """ ) gr.Interface( fn=inference, inputs=[ gr.Audio(label="Upload singing voice recording", type="filepath"), gr.Dropdown(choices=models, label="Select model", value=models[0]), ], outputs=[ gr.Textbox(label="Audio filename", show_copy_button=True), gr.Textbox(label="Singing method recognition", show_copy_button=True), ], examples=examples, ) demo.launch()