import os import torch import random import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt import torchvision.transforms as transforms from utils import get_modelist, find_wav_files from collections import Counter from model import EvalNet from PIL import Image CLASSES = ["m_chest", "f_chest", "m_falsetto", "f_falsetto"] def most_common_element(input_list): # 使用 Counter 统计每个元素的出现次数 counter = Counter(input_list) # 使用 most_common 方法获取出现次数最多的元素 most_common_element, _ = counter.most_common(1)[0] return most_common_element def wav_to_mel(audio_path: str, width=0.07): os.makedirs("./tmp", exist_ok=True) try: y, sr = librosa.load(audio_path, sr=48000) mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_mel_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_mel_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"./tmp/mel_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav_to_cqt(audio_path: str, width=0.07): os.makedirs("./tmp", exist_ok=True) try: y, sr = librosa.load(audio_path, sr=48000) cqt_spec = librosa.cqt(y=y, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_cqt_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_cqt_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"./tmp/cqt_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def wav_to_chroma(audio_path: str, width=0.07): os.makedirs("./tmp", exist_ok=True) try: y, sr = librosa.load(audio_path, sr=48000) chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_chroma_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_chroma_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"./tmp/chroma_{round(dur, 2)}_{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() except Exception as e: print(f"Error converting {audio_path} : {e}") def embed_img(img_path, input_size=224): transform = transforms.Compose( [ transforms.Resize([input_size, input_size]), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) img = Image.open(img_path).convert("RGB") return transform(img).unsqueeze(0) def inference(wav_path, log_name: str, folder_path="./tmp"): if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: wav_path = "./examples/m_falsetto.wav" model = EvalNet(log_name).model spec = log_name.split("_")[-1] eval("wav_to_%s" % spec)(wav_path) outputs = [] all_files = os.listdir(folder_path) for file_name in all_files: if file_name.lower().endswith(".jpg"): file_path = os.path.join(folder_path, file_name) input = embed_img(file_path) output = model(input) pred_id = torch.max(output.data, 1)[1] outputs.append(pred_id) max_count_item = most_common_element(outputs) shutil.rmtree(folder_path) return os.path.basename(wav_path), translate[CLASSES[max_count_item]] if __name__ == "__main__": warnings.filterwarnings("ignore") models = get_modelist() translate = { "m_chest": "男真声", "f_chest": "女真声", "m_falsetto": "男假声", "f_falsetto": "女假声", } examples = [] example_wavs = find_wav_files() model_num = len(models) for wav in example_wavs: examples.append([wav, models[random.randint(0, model_num - 1)]]) with gr.Blocks() as demo: gr.Interface( fn=inference, inputs=[ gr.Audio(label="上传录音", type="filepath"), gr.Dropdown(choices=models, label="选择模型", value=models[0]), ], outputs=[ gr.Textbox(label="音频文件名", show_copy_button=True), gr.Textbox(label="唱法识别", show_copy_button=True), ], examples=examples, allow_flagging="never", title="建议录音时长保持在 5s 左右, 过长会影响识别效率", ) demo.launch()