#@title Load packages import subprocess import gc import pandas as pd import multiprocessing as mp import datashader as ds import panel as pn import param from holoviews.operation import decimate from holoviews.operation.datashader import datashade, rasterize, dynspread from holoviews import dim, opts from holoviews.selection import link_selections from holoviews.streams import Selection1D import holoviews as hv import matplotlib.pyplot as plt import bokeh import colorcet as cc from colorcet.plotting import swatch from matplotlib import cm, colors from bokeh.settings import settings from bokeh.models import HoverTool from urllib import request import numpy as np np.random.seed(42) from io import StringIO from itertools import chain, combinations from collections import defaultdict hv.extension('bokeh', logo=False) pn.extension(design="bootstrap") from collections import Counter from Bio.Blast.NCBIWWW import qblast from Bio.Blast import NCBIXML #@title Functions to read in dataset, set up plotting def drop_samples(ix, max_reads): """Return indices of random samples from a batch of reads""" if len(ix) > max_reads: ix = np.random.choice(ix, size=max_reads, replace=False) return ix def downsample(a, max_reads=50, nbins=250): """Drop samples from dataset in regions of the 2D histogram that exceed a threshold (max_reads)""" #nbins = 500 h = np.histogram2d(a[:,0], a[:,1], bins=nbins) bins_y = np.searchsorted(h[2], a[:,1]) bins_x = np.searchsorted(h[1], a[:,0]) d = defaultdict(list) for i in range(len(a)): d[(bins_x[i], bins_y[i])].append(i) return np.array(list(chain.from_iterable(drop_samples(v,max_reads) for v in d.values()))) def remove_ids(df, rm_list): return df[~df['id'].isin(rm_list)] def get_category_labels(read_ids, label_files): """Assign labels to reads based on files with lists. Reads that do not appear in a list are labelled 0. All others are assigned integer labels corresponding to the order in which the files are listed - unless they are present in more than one set, in which case they are assigned to an additional category.""" mask = np.array(len(read_ids)*[0], dtype="int32") if len(label_files) == 0: print("Nothing to label.") return mask # iterate over lists of classified reads and assign integer labels all_sets = [] for i, cat in enumerate(label_files): seq_set = {j.strip("\n") for j in open(cat)} all_sets.append(seq_set) np.put(mask, np.where([seqid in seq_set for seqid in read_ids]), [i+1]) #check if lists overlap print(f"{i+1} class(es).") nt = lambda a, b: all_sets[a].intersection(all_sets[b]) if in_multiple := set().union( *[nt(*j) for j in combinations(range(i + 1), 2)] ): np.put(mask, np.where([seqid in in_multiple for seqid in read_ids]), [i+2]) print(f"Adding extra bin containing intersect of sets: {i + 2}") return mask def load_df(data, samples_bin=50, max_reads=50000000): """Determine whether to downsample the dataset and fetch indices, then load into dataframe""" if len(data['vae']) > max_reads: print("Downsampling data.") idxs = downsample(data["vae"], samples_bin) print("Downsampled.") else: idxs = np.array(range(len(data['vae']))) df = pd.DataFrame(data=data['vae'][idxs,:], columns=['x', 'y']) df['id'] = pd.Series(data["reads"][idxs]) df['hex'] = pd.Series(data['annot'][idxs]) df['fastk'] = pd.Series(data['slice'][idxs]) df['bin'] = 99 df['classes'] = pd.Categorical(data['classes'][idxs], ordered=True) #print(df) return df clrs = ['#E8ECFB', '#D9CCE3', '#D1BBD7', '#CAACCB', '#BA8DB4', '#AE76A3', '#AA6F9E', '#994F88', '#882E72', '#1965B0', '#437DBF', '#5289C7', '#6195CF', '#7BAFDE', '#4EB265', '#90C987', '#CAE0AB', '#F7F056', '#F7CB45', '#F6C141', '#F4A736', '#F1932D', '#EE8026', '#E8601C', '#E65518', '#DC050C', '#A5170E', '#72190E', '#42150A'] indexes = [[9], [9, 25], [9, 17, 25], [9, 14, 17, 25], [9, 13, 14, 17, 25], [9, 13, 14, 16, 17, 25], [8, 9, 13, 14, 16, 17, 25], [8, 9, 13, 14, 16, 17, 22, 25], [8, 9, 13, 14, 16, 17, 22, 25, 27], [8, 9, 13, 14, 16, 17, 20, 23, 25, 27], [8, 9, 11, 13, 14, 16, 17, 20, 23, 25, 27], [2, 5, 8, 9, 11, 13, 14, 16, 17, 20, 23, 25], [2, 5, 8, 9, 11, 13, 14, 15, 16, 17, 20, 23, 25], [2, 5, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25], [2, 5, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27], [2, 4, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27], [1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28], [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28]] # Interactive plotting class Scatter(param.Parameterized): """Build scatterplot for reads. Set up widgets to control display parameters, and the number of discrete bins for the coding density annotation (num_bins) and the coverage range displayed (upper, lower).""" min_alpha = param.Integer(50, bounds=(10, 255), doc="Set the minimum alpha value for points.", label="Minimum alpha") num_bins = param.Integer(5, bounds=(1, 10), doc="Select number of quantile bins for coding density (hex).", label="Number of bins") upper = param.Integer(32767, doc="Maximum k-mer coverage to display.", label="Max k-mer coverage") lower = param.Integer(0, doc="Minimum k-mer coverage to display.", label="Min k-mer coverage") lim_upper_hist = param.Integer(10000, bounds=(2,32767), label="Coverage hist max") lim_lower_hist = param.Integer(1, bounds=(1, 32766), label="Coverage hist min") bg = param.Selector(["white", "grey", "black"], doc="Select the background colour for the plot.", label="Background colour") show_class = param.ListSelector(default=[], objects=[], label='Select classes') color_cat = param.Selector(["glasbey_hv", "colorblind_bokeh", "tol_rainbow"], label='Categorical colour scheme') action = param.Action(lambda x: x.param.trigger('action'), label='Update histogram for current selection') reverse_colours = param.Boolean(doc="Reverse colour map for binned annotations", label="Reverse colours") #pn.config.throttled = True def __init__(self, df_complete, sample_id, **kwargs): super(Scatter, self).__init__(**kwargs) #### #FIXME def column_width(plot, element): """Manually override column widths""" plot.handles['table'].columns[2].width = 205 for i in [0, 1, 3, 4, 5, 6]: plot.handles['table'].columns[i].width = 50 #plot.handles['table'].autosize_mode = "none" # Initialise dataframe self.df_complete = df_complete self.sample_id = sample_id self.df = self.make_bins(self.num_bins) # Get points, selection box, and summary t6able self.points = hv.Points(data=self.df, kdims=['x','y'],vdims=['id']) self.box = hv.streams.BoundsXY(source=self.points, bounds=(-0.5, -0.5, 0.5, 0.5)) #self.bounds, self.dmap = self.selections() self.bounds = hv.DynamicMap(lambda bounds: hv.Bounds(bounds), streams=[self.box]) self.dmap = hv.DynamicMap(lambda bounds: hv.Table(self.df[(self.df['x'] > bounds[0]) & (self.df['x'] < bounds[2]) & \ (self.df['y'] > bounds[1]) & (self.df['y'] < bounds[3])].head(n=5000).round(2)).opts(editable=True, width=600), \ streams=[self.box]) # Set up colours for classes self.n_classes = df_complete['classes'].nunique() class_list = list(range(self.n_classes)) self.param.show_class.objects = class_list self.show_class = class_list self.cat_maps = {'glasbey_hv': cc.b_glasbey_hv, 'colorblind_bokeh': list(hv.Cycle.default_cycles["Colorblind"]), } # Drop maps that are too short if self.n_classes > 23: self.param.color_cat.objects = ["glasbey_hv"] else: self.cat_maps["tol_rainbow"] = [clrs[i] for i in indexes[self.n_classes]] if self.n_classes > 9: self.param.color_cat.objects = ["glasbey_hv", "tol_rainbow"] #self.colors_classes = self.colormap_classes() @pn.depends('action', 'lim_upper_hist', 'lim_lower_hist') def hist_coverage(self): if () in self.dmap.data: max_val = self.dmap.data[()]["fastk"].max() min_val = self.dmap.data[()]["fastk"].min() h_counts, h_bins = np.histogram(self.dmap.data[()]["fastk"], bins=min(50, max_val-min_val), range=(max(self.lim_lower_hist, min_val),min(self.lim_upper_hist, max_val))) else: h_counts, h_bins = np.histogram(self.df["fastk"], bins=50, range=(self.lim_lower_hist, self.lim_upper_hist)) return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="fastk") @pn.depends('action') def hist_hexamer(self): if () in self.dmap.data: #max_val = self.dmap.data[()]["hex"].max() #min_val = self.dmap.data[()]["hex"].min() h_counts, h_bins = np.histogram(self.dmap.data[()]["hex"], bins=50) #h_counts_base, h_bins_base = np.histogram(self.df["hex"], bins=50) return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer") # hv.Histogram((np.log1p(h_counts_base), h_bins_base)).opts(width=400, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer") + else: h_counts, h_bins = np.histogram(self.df["hex"], bins=50) return hv.Histogram((np.log1p(h_counts), h_bins)).opts(width=600, height=150, shared_axes=False, ylabel="log(Frequency)", xlabel="hexamer") def jitter(self, series): eps = np.finfo(np.float32).eps return (series + np.random.uniform(eps, 2*eps, len(series))).astype("float32") #@pn.depends('num_bins', watch=True) def make_bins(self, num_bins): """Bin coding density into quantiles, where num_bins is the number of bins. Then, call function to filter rows by coverage""" # If no data provided, fill with 0 if self.df_complete['hex'].min() == self.df_complete['hex'].max(): self.df_complete['bin'] = 0 else: bins = pd.Categorical(pd.qcut(self.jitter(self.df_complete['hex']), num_bins, labels=False, duplicates='drop')) self.df_complete['bin'] = bins self.df = self.filter_df() return self.df def filter_df(self): """Get rows within specified coverage range, lower <= coverage <= upper. Filter selected classes""" if self.lower <= self.upper: self.df = self.df_complete.loc[(self.df_complete['fastk'] <= self.upper) & (self.df_complete['fastk'] >= self.lower)] else: self.df = self.df_complete if (self.df_complete['classes'].nunique() > 1) & (len(self.show_class) > 0): self.df = self.df[self.df['classes'].isin(self.show_class)] return self.df def colormap(self): """Set up colourmap using viridis, generate legend labels""" v = cm.get_cmap('viridis') colors_hex = [colors.rgb2hex(i) for i in v(np.linspace(0, 1, self.num_bins))] if self.reverse_colours is True: colors_hex = colors_hex[::-1] legend_labels = dict( zip( list(range(self.num_bins)), [f"bin {i}" for i in range(self.num_bins)], ) ) return colors_hex, legend_labels def colormap_classes(self): """Set up categorical colourmap based on selection, generate legend labels""" colors_hex = self.cat_maps[self.color_cat][:self.n_classes] legend_labels = dict( zip( list(range(self.n_classes)), [f"class {i}" for i in range(self.n_classes)], ) ) return colors_hex, legend_labels @pn.depends('num_bins', 'upper', 'lower', 'show_class') def update_points(self): self.df = self.make_bins(self.num_bins) self.points = hv.Points(data=self.df, kdims=['x','y'],vdims=['id', 'bin', 'classes']) return 0 @pn.depends('min_alpha', 'num_bins', 'upper', 'lower', 'bg', 'show_class', 'reverse_colours') def draw_scatter_table(self): self.update_points() colors_hex, legend_labels = self.colormap() return self.draw_shaded(colors_hex, legend_labels, "bin") @pn.depends('min_alpha', 'num_bins', 'upper', 'lower', 'bg', 'show_class', 'color_cat') def draw_scatter_table_classes(self): self.update_points() colors_hex, legend_labels = self.colormap_classes() return self.draw_shaded(colors_hex, legend_labels, "classes") def draw_shaded(self, colors_hex, legend_labels, col): shaded = datashade( self.points, aggregator=ds.count_cat(col), color_key=colors_hex, min_alpha=self.min_alpha, ).opts( bgcolor=self.bg, width=700, height=700, show_grid=True, tools=["box_select"], default_tools=[], legend_labels=legend_labels, legend_position='top_right', legend_offset=(0, 0), title=f'Reads for {self.sample_id}', ) return hv.Overlay([dynspread(shaded, threshold=0.7)]).collate() * self.bounds.clone() def get_seq_file(identifier, fasta, seq_preview): seq_cmd = "{0} -A1 -m1 \"{1}\" {2}".format("zgrep", identifier, fasta) seq = subprocess.run(seq_cmd, capture_output=True, shell=True) if seq.returncode != 0: return 1 seqrecord = seq.stdout.decode("utf-8") seq_preview.object = "{}".format(seqrecord) return seqrecord def box_selected_data_dl(box, df): """Select rows in table corresponding to selected points""" return df[(df['x'] > box.bounds[0]) & (df['x'] < box.bounds[2]) & \ (df['y'] > box.bounds[1]) & (df['y'] < box.bounds[3])] def blast_function(seq): """ If you would like to use a custom command to run blast, replace this function. For example. on local blast server: blast_cmd = "timeout 300s curl -T temp.fa http://172.27.25.136:35227 | head -n5" blast = subprocess.run(blast_cmd, capture_output=True, shell=True) if blast.returncode == 0: blast_pane.object = '{0}'.format(blast.stdout.decode('utf-8')) else: #text_blast.value blast_pane.object = 'Non-zero return code {} {}'.format(blast, blast_cmd) """ #seq = "{}".format(open("temp.fa", "r").read()) result_handle = qblast("blastn", "nt", seq, megablast=True) blast_record = NCBIXML.read(result_handle) if len(blast_record.alignments) > 0: return "\n".join([t.title for t in blast_record.alignments[:5]])#blast_record.alignments[0].title else: return "No result" def make_panel(scatter, fasta): def button_readid_click(event): text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0]) def button_click_seq(event): if text_readid.value == "...": text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0]) if get_seq_file(text_readid.value, fasta, seq_preview) == 0: seq = "{}".format(open("temp.fa", "r").read()) def button_click_blast(event): if text_readid.value == "...": text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0]) blast_pane.object = "...running..." idle.value = True seq = get_seq_file(text_readid.value, fasta, seq_preview) if seq != 1: #seq = get_seq_file(text_readid.value, fasta, seq_preview) #"{}".format(open("temp.fa", "r").read()) blast_pane.object = blast_function(seq) else: blast_pane.object == 'Failed to get fasta' idle.value = False def find_read(event): if text_readid.value == "...": text_readid.value = '{0}'.format(scatter.dmap.data[()]['id'][0]) coord.value = "" locate = scatter.df.loc[scatter.df['id'] == text_readid.value] coord.value = "X: {:.4g}, Y: {:.4g}".format( locate['x'].values[0], locate['y'].values[0]) def download_csv(): reads = box_selected_data_dl(scatter.box, scatter.df) sio = StringIO() reads.to_csv(sio) sio.seek(0) sio.flush() return sio # Define buttons, panes, and actions button_readid = pn.widgets.Button( name='Get first sequence in selection', button_type='primary') text_readid = pn.widgets.TextInput(value='...') button_readid.on_click(button_readid_click) idle = pn.indicators.LoadingSpinner(value=False, width=50, height=50) button_blast = pn.widgets.Button( name='blastn selected sequence', button_type='primary') button_seq = pn.widgets.Button(name="Get sequence", button_type="primary") blast_pane = pn.pane.HTML("""Do megablast""", styles={'background-color': '#fcfcfc', 'border': '1px solid black', 'padding': '5px', 'overflow': 'scroll', 'width': '310px', 'height': '100px'}) button_blast.on_click(button_click_blast) button_seq.on_click(button_click_seq) coord = pn.widgets.StaticText(value="") button_find = pn.widgets.Button( name='Find read coordinates', button_type='primary') button_find.on_click(find_read) seq_preview = pn.pane.HTML(""" """, styles={'background-color': '#fcfcfc', 'border': '1px solid black', 'padding': '5px', 'overflow': 'scroll', 'width': '700px', 'height': '50px'}) file_download = pn.widgets.FileDownload(callback=download_csv, filename='reads.txt', label='Download selected reads', button_type='success', auto=True, embed=False) def lay_out_elements(): # Show class tab if multiple classes present if scatter.n_classes > 1: tabs = pn.Tabs(('Hexamer', scatter.draw_scatter_table), ('Classes', scatter.draw_scatter_table_classes), dynamic=True) else: tabs = pn.Tabs(('Hexamer', scatter.draw_scatter_table)) #tabs = scatter.draw_scatter_table # Widgets for blast, displaying sequence widgets_read_selection = pn.WidgetBox(pn.Row(text_readid), pn.Row(button_readid), pn.Row(pn.widgets.StaticText( name='Note', value='Click to update after drawing new selection')), pn.Row(button_seq), pn.Row(button_find), pn.Row(coord)) widgets_blast = pn.WidgetBox( pn.Row(blast_pane), pn.Row(button_blast), idle,) # Configure class selection widget if len(scatter.param.show_class.objects) <= 11: multi_select = pn.widgets.CheckButtonGroup.from_param( scatter.param.show_class) else: multi_select = pn.widgets.MultiChoice.from_param( scatter.param.show_class) # Lay out widgets for parameter settings param_layout = pn.WidgetBox(scatter.param.min_alpha, scatter.param.num_bins, scatter.param.reverse_colours, scatter.param.upper, scatter.param.lower, 'Background colour', pn.widgets.RadioButtonGroup.from_param( scatter.param.bg, name="Background colour"), ) # Add elements to right column, depending on available annotations right_col = pn.Column(pn.WidgetBox(scatter.dmap)) # Add histograms if plain_scatter != "True": #for el in [scatter.hist_coverage, scatter.hist_hexamer, scatter.param.lim_lower_hist, scatter.param.lim_upper_hist, scatter.param.action]: # right_col.append(el) right_col.append(pn.WidgetBox(scatter.hist_coverage, scatter.hist_hexamer, scatter.param.lim_lower_hist, scatter.param.lim_upper_hist, scatter.param.action, name="Histograms")) else: scatter.param.num_bins.constant = True scatter.param.upper.constant = True scatter.param.lower.constant = True # Add widgets to filter by class if scatter.n_classes > 1: #def cell_bg(s): # return [ f'background-color: {col}' for col in scatter.colors_classes[:scatter.n_classes-1] ] all_cats = ["Unclassified", "Trypanosome", "Multiple"] class_key = pn.widgets.Tabulator(pd.DataFrame({'list': all_cats}, index=range(len(all_cats)))) #class_key.style.apply(cell_bg) param_layout_classes = pn.Accordion(pn.WidgetBox( "Filter classified sequences", scatter.param.color_cat, multi_select, class_key, width=600, name="Filter classes")) right_col.append(param_layout_classes) filtered_view = pn.Row( pn.Column(param_layout, widgets_read_selection, widgets_blast, pn.Row(file_download)), pn.Column(pn.panel(tabs), pn.Row(seq_preview)), right_col ) return filtered_view return lay_out_elements() data_path = "" #request.urlretrieve("https://cobiontid.github.io/examples/ilCarKade1_204_downsampled.npz", "ilCarKade1_204_downsampled.npz") #request.urlretrieve("https://cobiontid.github.io/examples/Trypanosomatidae.finalreads", "Trypanosomatidae.finalreads") #request.urlretrieve("https://vae.cog.sanger.ac.uk/downsampled.fa.gz", "downsampled.fa.gz") use_own_data = False #@param {type:"boolean"} import sys def ids_width(reads): #""" Get max length for read ids to prevent truncation by np.loadtxt() """ wc = subprocess.run(["wc", "-L", reads], capture_output=True) if wc.returncode == 0: width = int(wc.stdout.decode('utf-8').split()[0]) return width else: sys.exit(1) #@markdown Your sample's name. sample_id = "my_species" #@param {type:"string"} #@markdown Specify your file paths. read_ids = "example.reads.ids.txt" #@param {type:"string"} vae_file = "example.vae.out.2d.0" #@param {type:"string"} coverage_file = "example.median_31mer.txt" #@param {type:"string"} density_file = "example.reads.hexsum" #@param {type:"string"} fasta = "reads.fa.gz" #@param {type:"string"} labelled_reads = "example.reads" #@param {type:"string"} if use_own_data == True: width = ids_width(read_ids) # load own data data_dict = {"vae": np.loadtxt(vae_file, dtype="float32"), "slice": np.loadtxt(coverage_file, dtype="int32"), "annot": np.loadtxt(density_file, dtype="float32"), "reads": np.loadtxt(read_ids, dtype="U{}".format(width)) } data_dict["classes"] = get_category_labels(data_dict["reads"], [labelled_reads]) else: fasta = "downsampled.fa.gz" sample_id = "ilCarKade1" data_dict = dict(np.load("ilCarKade1_204_downsampled.npz")) data_dict["classes"] = get_category_labels(data_dict["reads"], ["Trypanosomatidae.finalreads"]) import os import gc assert os.path.isfile(fasta) xy = load_df(data_dict) scatter = Scatter(xy, sample_id) plain_scatter = "False" view = make_panel(scatter, fasta) gc.collect() hv.extension("bokeh") pn.extension() view.servable("Read VAE")