#!/usr/bin/env python from __future__ import annotations import os import pathlib import tarfile import deepdanbooru as dd import gradio as gr import huggingface_hub import numpy as np import PIL.Image import tensorflow as tf def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): path = huggingface_hub.hf_hub_download( 'public-data/sample-images-TADNE', 'images.tar.gz', repo_type='dataset') with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob('*')) def load_model() -> tf.keras.Model: path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', 'model-resnet_custom_v3.h5') model = tf.keras.models.load_model(path) return model def load_labels() -> list[str]: path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', 'tags.txt') with open(path) as f: labels = [line.strip() for line in f.readlines()] return labels model = load_model() labels = load_labels() skip = ["rating:safe", "rating:questionable", "rating:explicit", "3d", "photorealistic", "realistic", "uncensored"] translate = {'yuri': 'lesbian', 'paizuri': 'tit job'} def predict( image: PIL.Image.Image, score_threshold: float ) -> tuple[dict[str, float], dict[str, float], str]: _, height, width, _ = model.input_shape image = np.asarray(image) image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True) image = image.numpy() image = dd.image.transform_and_pad_image(image, width, height) image = image / 255. probs = model.predict(image[None, ...])[0] probs = probs.astype(float) indices = np.argsort(probs)[::-1] result_all = dict() result_threshold = dict() for index in indices: label = labels[index] print(label) prob = probs[index] if label in skip: print("skip", label) continue if label in translate: label = translate[label] result_all[label] = prob if prob < score_threshold: break result_threshold[label] = prob result_text = ', '.join(result_all.keys()) return result_threshold, result_all, result_text image_paths = load_sample_image_paths() examples = [[path.as_posix(), 0.5] for path in image_paths] with gr.Blocks(css='style.css') as demo: with gr.Row(): with gr.Column(): image = gr.Image(label='Input', type='pil') score_threshold = gr.Slider(label='Score threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button('Run') with gr.Column(): with gr.Tabs(): with gr.Tab(label='Output'): result = gr.Label(label='Output', show_label=False) with gr.Tab(label='JSON'): result_json = gr.JSON(label='JSON output', show_label=False) with gr.Tab(label='Text'): result_text = gr.Text(label='Text output', show_label=False, lines=5) gr.Examples(examples=examples, inputs=[image, score_threshold], outputs=[result, result_json, result_text], fn=predict, cache_examples=os.getenv('CACHE_EXAMPLES') == '1') run_button.click( fn=predict, inputs=[image, score_threshold], outputs=[result, result_json, result_text], api_name='predict', ) demo.queue().launch()