# Copyright (c) HuaWei, Inc. and its affiliates. # liu.haiyang@huawei.com import torch.nn as nn import torch.nn.functional as F import torch import numpy as np class GeodesicLoss(nn.Module): def __init__(self): super(GeodesicLoss, self).__init__() def compute_geodesic_distance(self, m1, m2): """ Compute the geodesic distance between two rotation matrices. Args: m1, m2: Two rotation matrices with the shape (batch x 3 x 3). Returns: The minimal angular difference between two rotation matrices in radian form [0, pi]. """ m1 = m1.reshape(-1, 3, 3) m2 = m2.reshape(-1, 3, 3) batch = m1.shape[0] m = torch.bmm(m1, m2.transpose(1, 2)) # batch*3*3 cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2 cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6) theta = torch.acos(cos) return theta def __call__(self, m1, m2, reduction='mean'): loss = self.compute_geodesic_distance(m1, m2) if reduction == 'mean': return loss.mean() elif reduction == 'none': return loss else: raise RuntimeError(f'unsupported reduction: {reduction}') class BCE_Loss(nn.Module): def __init__(self, args=None): super(BCE_Loss, self).__init__() def forward(self, fake_outputs, real_target): final_loss = F.cross_entropy(fake_outputs, real_target, reduce="mean") return final_loss class weight_Loss(nn.Module): def __init__(self, args=None): super(weight_Loss, self).__init__() def forward(self, weight_f): weight_loss_div = torch.mean(weight_f[:, :, 0]*weight_f[:, :, 1]) weight_loss_gap = torch.mean(-torch.log(torch.max(weight_f[:, :, 0], dim=1)[0] - torch.min(weight_f[:, :, 0], dim=1)[0])) return weight_loss_div, weight_loss_gap class HuberLoss(nn.Module): def __init__(self, beta=0.1, reduction="mean"): super(HuberLoss, self).__init__() self.beta = beta self.reduction = reduction def forward(self, outputs, targets): final_loss = F.smooth_l1_loss(outputs / self.beta, targets / self.beta, reduction=self.reduction) * self.beta return final_loss class KLDLoss(nn.Module): def __init__(self, beta=0.1): super(KLDLoss, self).__init__() self.beta = beta def forward(self, outputs, targets): final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta) return final_loss class REGLoss(nn.Module): def __init__(self, beta=0.1): super(REGLoss, self).__init__() self.beta = beta def forward(self, outputs, targets): final_loss = F.smooth_l1_loss((outputs / self.beta, targets / self.beta) * self.beta) return final_loss class L2Loss(nn.Module): def __init__(self): super(L2Loss, self).__init__() def forward(self, outputs, targets): final_loss = F.l2_loss(outputs, targets) return final_loss LOSS_FUNC_LUT = { "bce_loss": BCE_Loss, "l2_loss": L2Loss, "huber_loss": HuberLoss, "kl_loss": KLDLoss, "id_loss": REGLoss, "GeodesicLoss": GeodesicLoss, "weight_Loss": weight_Loss, } def get_loss_func(loss_name, **kwargs): loss_func_class = LOSS_FUNC_LUT.get(loss_name) loss_func = loss_func_class(**kwargs) return loss_func