"""Based on Daniel Holden code from: A Deep Learning Framework for Character Motion Synthesis and Editing (http://www.ipab.inf.ed.ac.uk/cgvu/motionsynthesis.pdf) """ import os import numpy as np import torch import torch.nn as nn from .rotations import euler_angles_to_matrix, quaternion_to_matrix, rotation_6d_to_matrix class ForwardKinematicsLayer(nn.Module): """ Forward Kinematics Layer Class """ def __init__(self, args=None, parents=None, positions=None, device=None): super().__init__() self.b_idxs = None if device is None: self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') else: self.device = device if parents is None and positions is None: # Load SMPL skeleton (their joint order is different from the one we use for bvh export) smpl_fname = os.path.join(args.smpl.smpl_body_model, args.data.gender, 'model.npz') smpl_data = np.load(smpl_fname, encoding='latin1') self.parents = torch.from_numpy(smpl_data['kintree_table'][0].astype(np.int32)).to(self.device) self.parents = self.parents.long() self.positions = torch.from_numpy(smpl_data['J'].astype(np.float32)).to(self.device) self.positions[1:] -= self.positions[self.parents[1:]] else: self.parents = torch.from_numpy(parents).to(self.device) self.parents = self.parents.long() self.positions = torch.from_numpy(positions).to(self.device) self.positions = self.positions.float() self.positions[0] = 0 def rotate(self, t0s, t1s): return torch.matmul(t0s, t1s) def identity_rotation(self, rotations): diagonal = torch.diag(torch.tensor([1.0, 1.0, 1.0, 1.0])).to(self.device) diagonal = torch.reshape( diagonal, torch.Size([1] * len(rotations.shape[:2]) + [4, 4])) ts = diagonal.repeat(rotations.shape[:2] + torch.Size([1, 1])) return ts def make_fast_rotation_matrices(self, positions, rotations): if len(rotations.shape) == 4 and rotations.shape[-2:] == torch.Size([3, 3]): rot_matrices = rotations elif rotations.shape[-1] == 3: rot_matrices = euler_angles_to_matrix(rotations, convention='XYZ') elif rotations.shape[-1] == 4: rot_matrices = quaternion_to_matrix(rotations) elif rotations.shape[-1] == 6: rot_matrices = rotation_6d_to_matrix(rotations) else: raise NotImplementedError(f'Unimplemented rotation representation in FK layer, shape of {rotations.shape}') rot_matrices = torch.cat([rot_matrices, positions[..., None]], dim=-1) zeros = torch.zeros(rot_matrices.shape[:-2] + torch.Size([1, 3])).to(self.device) ones = torch.ones(rot_matrices.shape[:-2] + torch.Size([1, 1])).to(self.device) zerosones = torch.cat([zeros, ones], dim=-1) rot_matrices = torch.cat([rot_matrices, zerosones], dim=-2) return rot_matrices def rotate_global(self, parents, positions, rotations): locals = self.make_fast_rotation_matrices(positions, rotations) globals = self.identity_rotation(rotations) globals = torch.cat([locals[:, 0:1], globals[:, 1:]], dim=1) b_size = positions.shape[0] if self.b_idxs is None: self.b_idxs = torch.LongTensor(np.arange(b_size)).to(self.device) elif self.b_idxs.shape[-1] != b_size: self.b_idxs = torch.LongTensor(np.arange(b_size)).to(self.device) for i in range(1, positions.shape[1]): globals[:, i] = self.rotate( globals[self.b_idxs, parents[i]], locals[:, i]) return globals def get_tpose_joints(self, offsets, parents): num_joints = len(parents) joints = [offsets[:, 0]] for j in range(1, len(parents)): joints.append(joints[parents[j]] + offsets[:, j]) return torch.stack(joints, dim=1) def canonical_to_local(self, canonical_xform, global_orient=None): """ Args: canonical_xform: (B, J, 3, 3) global_orient: (B, 3, 3) Returns: local_xform: (B, J, 3, 3) """ local_xform = torch.zeros_like(canonical_xform) if global_orient is None: global_xform = canonical_xform else: global_xform = torch.matmul(global_orient.unsqueeze(1), canonical_xform) for i in range(global_xform.shape[1]): if i == 0: local_xform[:, i] = global_xform[:, i] else: local_xform[:, i] = torch.bmm(torch.linalg.inv(global_xform[:, self.parents[i]]), global_xform[:, i]) return local_xform def global_to_local(self, global_xform): """ Args: global_xform: (B, J, 3, 3) Returns: local_xform: (B, J, 3, 3) """ local_xform = torch.zeros_like(global_xform) for i in range(global_xform.shape[1]): if i == 0: local_xform[:, i] = global_xform[:, i] else: local_xform[:, i] = torch.bmm(torch.linalg.inv(global_xform[:, self.parents[i]]), global_xform[:, i]) return local_xform def forward(self, rotations, positions=None): """ Args: rotations (B, J, D) Returns: The global position of each joint after FK (B, J, 3) """ # Get the full transform with rotations for skinning b_size = rotations.shape[0] if positions is None: positions = self.positions.repeat(b_size, 1, 1) transforms = self.rotate_global(self.parents, positions, rotations) coordinates = transforms[:, :, :3, 3] / transforms[:, :, 3:, 3] return coordinates, transforms