import copy import math import pickle import numpy as np import torch import torch.nn as nn from .utils.layer import BasicBlock from .motion_encoder import * class WavEncoder(nn.Module): def __init__(self, out_dim, audio_in=1): super().__init__() self.out_dim = out_dim self.feat_extractor = nn.Sequential( BasicBlock(audio_in, out_dim//4, 15, 5, first_dilation=1600, downsample=True), BasicBlock(out_dim//4, out_dim//4, 15, 6, first_dilation=0, downsample=True), BasicBlock(out_dim//4, out_dim//4, 15, 1, first_dilation=7, ), BasicBlock(out_dim//4, out_dim//2, 15, 6, first_dilation=0, downsample=True), BasicBlock(out_dim//2, out_dim//2, 15, 1, first_dilation=7), BasicBlock(out_dim//2, out_dim, 15, 3, first_dilation=0,downsample=True), ) def forward(self, wav_data): # print(wav_data.shape) if wav_data.dim() == 2: wav_data = wav_data.unsqueeze(1) else: wav_data = wav_data.transpose(1, 2) out = self.feat_extractor(wav_data) return out.transpose(1, 2) class MLP(nn.Module): def __init__(self, in_dim, hidden_size, out_dim): super().__init__() self.mlp = nn.Sequential( nn.Linear(in_dim, hidden_size), nn.LeakyReLU(0.2, True), nn.Linear(hidden_size, out_dim) ) def forward(self, inputs): out = self.mlp(inputs) return out class PeriodicPositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, period=15, max_seq_len=60): super(PeriodicPositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(period, d_model) position = torch.arange(0, period, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # (1, period, d_model) repeat_num = (max_seq_len//period) + 1 pe = pe.repeat(1, repeat_num, 1) # (1, repeat_num, period, d_model) self.register_buffer('pe', pe) def forward(self, x): # print(self.pe.shape, x.shape) x = x + self.pe[:, :x.size(1), :] return self.dropout(x) class MAGE_Transformer(nn.Module): def __init__(self, args): super(MAGE_Transformer, self).__init__() self.args = args # with open(f"{args.data_path}weights/vocab.pkl", 'rb') as f: # self.lang_model = pickle.load(f) # pre_trained_embedding = self.lang_model.word_embedding_weights # self.text_pre_encoder_face = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),freeze=args.t_fix_pre) # self.text_encoder_face = nn.Linear(300, args.audio_f) # self.text_encoder_face = nn.Linear(300, args.audio_f) # self.text_pre_encoder_body = nn.Embedding.from_pretrained(torch.FloatTensor(pre_trained_embedding),freeze=args.t_fix_pre) # self.text_encoder_body = nn.Linear(300, args.audio_f) # self.text_encoder_body = nn.Linear(300, args.audio_f) self.audio_pre_encoder_face = WavEncoder(args.audio_f, audio_in=1) self.audio_pre_encoder_body = WavEncoder(args.audio_f, audio_in=1) # self.at_attn_face = nn.Linear(args.audio_f*2, args.audio_f*2) # self.at_attn_body = nn.Linear(args.audio_f*2, args.audio_f*2) args_top = copy.deepcopy(self.args) args_top.vae_layer = 3 args_top.vae_length = args.motion_f args_top.vae_test_dim = args.pose_dims+3+4 self.motion_encoder = VQEncoderV6(args_top) # masked motion to latent bs t 333 to bs t 256 # face decoder self.feature2face = nn.Linear(args.audio_f*2, args.hidden_size) self.face2latent = nn.Linear(args.hidden_size, args.vae_codebook_size) self.transformer_de_layer = nn.TransformerDecoderLayer( d_model=self.args.hidden_size, nhead=4, dim_feedforward=self.args.hidden_size*2, batch_first=True ) self.face_decoder = nn.TransformerDecoder(self.transformer_de_layer, num_layers=4) self.position_embeddings = PeriodicPositionalEncoding(self.args.hidden_size, period=self.args.pose_length, max_seq_len=self.args.pose_length) # motion decoder self.transformer_en_layer = nn.TransformerEncoderLayer( d_model=self.args.hidden_size, nhead=4, dim_feedforward=self.args.hidden_size*2, batch_first=True ) self.motion_self_encoder = nn.TransformerEncoder(self.transformer_en_layer, num_layers=1) self.audio_feature2motion = nn.Linear(args.audio_f, args.hidden_size) self.feature2motion = nn.Linear(args.motion_f, args.hidden_size) self.bodyhints_face = MLP(args.motion_f, args.hidden_size, args.motion_f) self.bodyhints_body = MLP(args.motion_f, args.hidden_size, args.motion_f) self.motion2latent_upper = MLP(args.hidden_size, args.hidden_size, self.args.hidden_size) self.motion2latent_hands = MLP(args.hidden_size, args.hidden_size, self.args.hidden_size) self.motion2latent_lower = MLP(args.hidden_size, args.hidden_size, self.args.hidden_size) self.wordhints_decoder = nn.TransformerDecoder(self.transformer_de_layer, num_layers=8) self.upper_decoder = nn.TransformerDecoder(self.transformer_de_layer, num_layers=1) self.hands_decoder = nn.TransformerDecoder(self.transformer_de_layer, num_layers=1) self.lower_decoder = nn.TransformerDecoder(self.transformer_de_layer, num_layers=1) self.face_classifier = MLP(self.args.vae_codebook_size, args.hidden_size, self.args.vae_codebook_size) self.upper_classifier = MLP(self.args.vae_codebook_size, args.hidden_size, self.args.vae_codebook_size) self.hands_classifier = MLP(self.args.vae_codebook_size, args.hidden_size, self.args.vae_codebook_size) self.lower_classifier = MLP(self.args.vae_codebook_size, args.hidden_size, self.args.vae_codebook_size) self.mask_embeddings = nn.Parameter(torch.zeros(1, 1, self.args.pose_dims+3+4)) self.motion_down_upper = nn.Linear(args.hidden_size, self.args.vae_codebook_size) self.motion_down_hands = nn.Linear(args.hidden_size, self.args.vae_codebook_size) self.motion_down_lower = nn.Linear(args.hidden_size, self.args.vae_codebook_size) self.motion_down_upper = nn.Linear(args.hidden_size, self.args.vae_codebook_size) self.motion_down_hands = nn.Linear(args.hidden_size, self.args.vae_codebook_size) self.motion_down_lower = nn.Linear(args.hidden_size, self.args.vae_codebook_size) self._reset_parameters() self.spearker_encoder_body = nn.Embedding(25, args.hidden_size) self.spearker_encoder_face = nn.Embedding(25, args.hidden_size) def _reset_parameters(self): nn.init.normal_(self.mask_embeddings, 0, self.args.hidden_size ** -0.5) def forward(self, in_audio=None, in_word=None, mask=None, is_test=None, in_motion=None, use_attentions=True, use_word=True, in_id = None): # in_word_face = self.text_pre_encoder_face(in_word) # in_word_face = self.text_encoder_face(in_word_face) # in_word_body = self.text_pre_encoder_body(in_word) # in_word_body = self.text_encoder_body(in_word_body) # bs, t, c = in_word_face.shape in_audio_face = self.audio_pre_encoder_face(in_audio) in_audio_body = self.audio_pre_encoder_body(in_audio) bs, t, c = in_audio_body.shape # if in_audio_face.shape[1] != in_motion.shape[1]: # diff_length = in_motion.shape[1]- in_audio_face.shape[1] # if diff_length < 0: # in_audio_face = in_audio_face[:, :diff_length, :] # in_audio_body = in_audio_body[:, :diff_length, :] # else: # in_audio_face = torch.cat((in_audio_face, in_audio_face[:,-diff_length:]),1) # in_audio_body = torch.cat((in_audio_body, in_audio_body[:,-diff_length:]),1) # if use_attentions: # alpha_at_face = torch.cat([in_word_face, in_audio_face], dim=-1).reshape(bs, t, c*2) # alpha_at_face = self.at_attn_face(alpha_at_face).reshape(bs, t, c, 2) # alpha_at_face = alpha_at_face.softmax(dim=-1) # fusion_face = in_word_face * alpha_at_face[:,:,:,1] + in_audio_face * alpha_at_face[:,:,:,0] # alpha_at_body = torch.cat([in_word_body, in_audio_body], dim=-1).reshape(bs, t, c*2) # alpha_at_body = self.at_attn_body(alpha_at_body).reshape(bs, t, c, 2) # alpha_at_body = alpha_at_body.softmax(dim=-1) # fusion_body = in_word_body * alpha_at_body[:,:,:,1] + in_audio_body * alpha_at_body[:,:,:,0] # else: fusion_face = in_audio_face fusion_body = in_audio_body masked_embeddings = self.mask_embeddings.expand_as(in_motion) masked_motion = torch.where(mask == 1, masked_embeddings, in_motion) # bs, t, 256 body_hint = self.motion_encoder(masked_motion) # bs t 256 speaker_embedding_face = self.spearker_encoder_face(in_id).squeeze(2) speaker_embedding_body = self.spearker_encoder_body(in_id).squeeze(2) # decode face use_body_hints = True if use_body_hints: body_hint_face = self.bodyhints_face(body_hint) fusion_face = torch.cat([fusion_face, body_hint_face], dim=2) a2g_face = self.feature2face(fusion_face) face_embeddings = speaker_embedding_face face_embeddings = self.position_embeddings(face_embeddings) decoded_face = self.face_decoder(tgt=face_embeddings, memory=a2g_face) face_latent = self.face2latent(decoded_face) cls_face = self.face_classifier(face_latent) # motion spatial encoder body_hint_body = self.bodyhints_body(body_hint) motion_embeddings = self.feature2motion(body_hint_body) motion_embeddings = speaker_embedding_body + motion_embeddings motion_embeddings = self.position_embeddings(motion_embeddings) # bi-directional self-attention motion_refined_embeddings = self.motion_self_encoder(motion_embeddings) # audio to gesture cross-modal attention if use_word: a2g_motion = self.audio_feature2motion(fusion_body) motion_refined_embeddings_in = motion_refined_embeddings + speaker_embedding_body motion_refined_embeddings_in = self.position_embeddings(motion_refined_embeddings) word_hints = self.wordhints_decoder(tgt=motion_refined_embeddings_in, memory=a2g_motion) motion_refined_embeddings = motion_refined_embeddings + word_hints # feedforward upper_latent = self.motion2latent_upper(motion_refined_embeddings) hands_latent = self.motion2latent_hands(motion_refined_embeddings) lower_latent = self.motion2latent_lower(motion_refined_embeddings) upper_latent_in = upper_latent + speaker_embedding_body upper_latent_in = self.position_embeddings(upper_latent_in) hands_latent_in = hands_latent + speaker_embedding_body hands_latent_in = self.position_embeddings(hands_latent_in) lower_latent_in = lower_latent + speaker_embedding_body lower_latent_in = self.position_embeddings(lower_latent_in) # transformer decoder motion_upper = self.upper_decoder(tgt=upper_latent_in, memory=hands_latent+lower_latent) motion_hands = self.hands_decoder(tgt=hands_latent_in, memory=upper_latent+lower_latent) motion_lower = self.lower_decoder(tgt=lower_latent_in, memory=upper_latent+hands_latent) upper_latent = self.motion_down_upper(motion_upper+upper_latent) hands_latent = self.motion_down_hands(motion_hands+hands_latent) lower_latent = self.motion_down_lower(motion_lower+lower_latent) cls_lower = self.lower_classifier(lower_latent) cls_upper = self.upper_classifier(upper_latent) cls_hands = self.hands_classifier(hands_latent) return { "rec_face":face_latent, "rec_upper":upper_latent, "rec_lower":lower_latent, "rec_hands":hands_latent, "cls_face":cls_face, "cls_upper":cls_upper, "cls_lower":cls_lower, "cls_hands":cls_hands, }