Spaces:
Sleeping
Sleeping
Aug 2025 Bug Fixes
Browse files- models/propensity.py +736 -127
models/propensity.py
CHANGED
|
@@ -1,127 +1,736 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
-
import matplotlib
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Runtime-safe installs
|
| 3 |
+
try:
|
| 4 |
+
import numpy # noqa
|
| 5 |
+
import pandas # noqa
|
| 6 |
+
import sklearn # noqa
|
| 7 |
+
import matplotlib # noqa
|
| 8 |
+
import PIL # noqa
|
| 9 |
+
except Exception:
|
| 10 |
+
import sys, subprocess
|
| 11 |
+
subprocess.run(
|
| 12 |
+
[sys.executable, "-m", "pip", "install", "-q",
|
| 13 |
+
"numpy", "pandas", "scikit-learn", "matplotlib", "pillow"],
|
| 14 |
+
check=False
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# models/propensity.py
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import List, Tuple, Optional, Union, Dict
|
| 20 |
+
|
| 21 |
+
import io
|
| 22 |
+
import numpy as np
|
| 23 |
+
import pandas as pd
|
| 24 |
+
from PIL import Image
|
| 25 |
+
|
| 26 |
+
import matplotlib
|
| 27 |
+
matplotlib.use("Agg")
|
| 28 |
+
import matplotlib.pyplot as plt
|
| 29 |
+
|
| 30 |
+
from sklearn.linear_model import LogisticRegression
|
| 31 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
| 32 |
+
from sklearn.compose import ColumnTransformer
|
| 33 |
+
from sklearn.pipeline import Pipeline
|
| 34 |
+
|
| 35 |
+
# -----------------------------
|
| 36 |
+
# Helpers
|
| 37 |
+
# -----------------------------
|
| 38 |
+
|
| 39 |
+
def _ensure_binary(series: pd.Series) -> pd.Series:
|
| 40 |
+
s = series.copy()
|
| 41 |
+
if s.dtype == bool:
|
| 42 |
+
return s.astype(int)
|
| 43 |
+
if s.dtype == object:
|
| 44 |
+
mapping = {"t":1,"true":1,"yes":1,"y":1,"1":1,"f":0,"false":0,"no":0,"n":0,"0":0}
|
| 45 |
+
m = s.astype(str).str.strip().str.lower().map(mapping).astype("Int64")
|
| 46 |
+
if m.isna().any():
|
| 47 |
+
try:
|
| 48 |
+
sn = pd.to_numeric(s, errors="raise")
|
| 49 |
+
if set(pd.unique(sn)) <= {0,1}:
|
| 50 |
+
return sn.astype(int)
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
+
raise ValueError("Treatment column cannot be coerced to binary 0/1.")
|
| 54 |
+
return m.astype(int)
|
| 55 |
+
uniq = set(pd.unique(s.dropna()))
|
| 56 |
+
if uniq <= {0,1} or uniq <= {0.0,1.0}:
|
| 57 |
+
return s.astype(int)
|
| 58 |
+
raise ValueError("Treatment column must contain values that map to 0/1.")
|
| 59 |
+
|
| 60 |
+
def _select_features(df: pd.DataFrame, feature_cols: List[str], outcome_col: Optional[str]) -> List[str]:
|
| 61 |
+
cols = [c for c in feature_cols if c in df.columns]
|
| 62 |
+
if outcome_col and outcome_col in df.columns and outcome_col not in cols:
|
| 63 |
+
cols.append(outcome_col) # include outcome for balance view only
|
| 64 |
+
return cols
|
| 65 |
+
|
| 66 |
+
def _split_num_cat(df: pd.DataFrame, cols: List[str]) -> Tuple[List[str], List[str]]:
|
| 67 |
+
num, cat = [], []
|
| 68 |
+
for c in cols:
|
| 69 |
+
(num if pd.api.types.is_numeric_dtype(df[c]) else cat).append(c)
|
| 70 |
+
return num, cat
|
| 71 |
+
|
| 72 |
+
# -----------------------------
|
| 73 |
+
# Propensity model
|
| 74 |
+
# -----------------------------
|
| 75 |
+
|
| 76 |
+
def _fit_propensity(df: pd.DataFrame, treatment_col: str, features: List[str]) -> Tuple[np.ndarray, Pipeline]:
|
| 77 |
+
y = _ensure_binary(df[treatment_col])
|
| 78 |
+
num, cat = _split_num_cat(df, features)
|
| 79 |
+
transformers = []
|
| 80 |
+
if num:
|
| 81 |
+
transformers.append(("num", StandardScaler(), num))
|
| 82 |
+
if cat:
|
| 83 |
+
try:
|
| 84 |
+
ohe = OneHotEncoder(handle_unknown="ignore", drop="first", sparse_output=False) # sklearn>=1.2
|
| 85 |
+
except TypeError:
|
| 86 |
+
ohe = OneHotEncoder(handle_unknown="ignore", drop="first", sparse=False)
|
| 87 |
+
transformers.append(("cat", ohe, cat))
|
| 88 |
+
pre = ColumnTransformer(transformers, remainder="drop", verbose_feature_names_out=False)
|
| 89 |
+
clf = LogisticRegression(max_iter=2000, solver="liblinear")
|
| 90 |
+
pipe = Pipeline([("pre", pre), ("clf", clf)])
|
| 91 |
+
pipe.fit(df[features], y.values)
|
| 92 |
+
ps = pipe.predict_proba(df[features])[:, 1]
|
| 93 |
+
return ps, pipe
|
| 94 |
+
|
| 95 |
+
# -----------------------------
|
| 96 |
+
# Matching
|
| 97 |
+
# -----------------------------
|
| 98 |
+
|
| 99 |
+
@dataclass
|
| 100 |
+
class MatchSummary:
|
| 101 |
+
method: str
|
| 102 |
+
treated_rows: int
|
| 103 |
+
control_rows: int
|
| 104 |
+
unique_controls: int
|
| 105 |
+
min_controls: int
|
| 106 |
+
max_controls: int
|
| 107 |
+
replacement: bool
|
| 108 |
+
caliper: Optional[float]
|
| 109 |
+
n_strata: Optional[int] = None
|
| 110 |
+
caliper_dropped_treated: int = 0 # diagnostic
|
| 111 |
+
|
| 112 |
+
def _greedy_nearest(
|
| 113 |
+
df: pd.DataFrame,
|
| 114 |
+
ps_col: str,
|
| 115 |
+
treatment_col: str,
|
| 116 |
+
min_controls: int,
|
| 117 |
+
max_controls: int,
|
| 118 |
+
replacement: bool,
|
| 119 |
+
caliper: Optional[float] = None,
|
| 120 |
+
) -> Tuple[pd.DataFrame, MatchSummary]:
|
| 121 |
+
work = df.copy()
|
| 122 |
+
work["__rowid__"] = np.arange(len(work))
|
| 123 |
+
treated = work[work[treatment_col] == 1]
|
| 124 |
+
control = work[work[treatment_col] == 0].copy()
|
| 125 |
+
if control.empty or treated.empty:
|
| 126 |
+
return pd.DataFrame(), MatchSummary("nearest", 0, 0, 0, min_controls, max_controls, replacement, caliper)
|
| 127 |
+
|
| 128 |
+
used = set()
|
| 129 |
+
pairs: List[Tuple[int, int]] = []
|
| 130 |
+
dropped_due_to_caliper = 0
|
| 131 |
+
|
| 132 |
+
for _, t in treated.iterrows():
|
| 133 |
+
diffs = control.copy()
|
| 134 |
+
diffs["__dist__"] = (diffs[ps_col] - t[ps_col]).abs()
|
| 135 |
+
if caliper is not None and caliper >= 0:
|
| 136 |
+
diffs = diffs[diffs["__dist__"] <= caliper]
|
| 137 |
+
if not replacement:
|
| 138 |
+
diffs = diffs[~diffs["__rowid__"].isin(used)]
|
| 139 |
+
diffs = diffs.sort_values("__dist__", ascending=True).head(max_controls)
|
| 140 |
+
if len(diffs) < min_controls:
|
| 141 |
+
if caliper is not None and caliper >= 0:
|
| 142 |
+
dropped_due_to_caliper += 1
|
| 143 |
+
continue
|
| 144 |
+
for _, c in diffs.iterrows():
|
| 145 |
+
pairs.append((int(t["__rowid__"]), int(c["__rowid__"])))
|
| 146 |
+
if not replacement:
|
| 147 |
+
used.add(int(c["__rowid__"]))
|
| 148 |
+
|
| 149 |
+
if not pairs:
|
| 150 |
+
return pd.DataFrame(), MatchSummary("nearest", 0, 0, 0, min_controls, max_controls, replacement, caliper, caliper_dropped_treated=dropped_due_to_caliper)
|
| 151 |
+
|
| 152 |
+
idx_t = [p[0] for p in pairs]
|
| 153 |
+
idx_c = [p[1] for p in pairs]
|
| 154 |
+
wsi = work.set_index("__rowid__")
|
| 155 |
+
|
| 156 |
+
# Build a UNIQUE mapping of treated rowid -> group id (in first-seen order)
|
| 157 |
+
# This avoids Pandas "Reindexing only valid with uniquely valued Index objects" during map().
|
| 158 |
+
treated_seq = idx_t # sequence with duplicates, one per pair
|
| 159 |
+
seen = set()
|
| 160 |
+
unique_treated_in_order = []
|
| 161 |
+
for t_id in treated_seq:
|
| 162 |
+
if t_id not in seen:
|
| 163 |
+
unique_treated_in_order.append(t_id)
|
| 164 |
+
seen.add(t_id)
|
| 165 |
+
group_map = {t_id: gid for gid, t_id in enumerate(unique_treated_in_order)}
|
| 166 |
+
|
| 167 |
+
mt = wsi.loc[idx_t].copy()
|
| 168 |
+
mt["__role__"] = "treated"
|
| 169 |
+
mt["__match_group__"] = [group_map[t_id] for t_id in mt.index]
|
| 170 |
+
|
| 171 |
+
mc = wsi.loc[idx_c].copy()
|
| 172 |
+
mc["__role__"] = "control"
|
| 173 |
+
# align groups to each pair order (idx_t and idx_c are parallel)
|
| 174 |
+
mc["__match_group__"] = [group_map[t_id] for t_id in idx_t]
|
| 175 |
+
|
| 176 |
+
matched_stack = pd.concat([mt, mc], ignore_index=True)
|
| 177 |
+
|
| 178 |
+
summary = MatchSummary(
|
| 179 |
+
method="nearest",
|
| 180 |
+
treated_rows=mt.shape[0],
|
| 181 |
+
control_rows=mc.shape[0],
|
| 182 |
+
unique_controls=len(set(idx_c)),
|
| 183 |
+
min_controls=min_controls, max_controls=max_controls,
|
| 184 |
+
replacement=replacement, caliper=caliper,
|
| 185 |
+
n_strata=None,
|
| 186 |
+
caliper_dropped_treated=dropped_due_to_caliper,
|
| 187 |
+
)
|
| 188 |
+
return matched_stack, summary
|
| 189 |
+
|
| 190 |
+
def _caliper_matching(
|
| 191 |
+
df: pd.DataFrame,
|
| 192 |
+
ps_col: str,
|
| 193 |
+
treatment_col: str,
|
| 194 |
+
min_controls: int,
|
| 195 |
+
max_controls: int,
|
| 196 |
+
replacement: bool,
|
| 197 |
+
caliper: float,
|
| 198 |
+
) -> Tuple[pd.DataFrame, MatchSummary]:
|
| 199 |
+
if caliper is None or caliper < 0:
|
| 200 |
+
raise ValueError("`caliper` must be a non-negative float for caliper matching.")
|
| 201 |
+
matched, base_summary = _greedy_nearest(
|
| 202 |
+
df, ps_col, treatment_col, min_controls, max_controls, replacement, caliper=caliper
|
| 203 |
+
)
|
| 204 |
+
summary = MatchSummary(
|
| 205 |
+
method="caliper", # MODIFIED: correct method label
|
| 206 |
+
treated_rows=base_summary.treated_rows,
|
| 207 |
+
control_rows=base_summary.control_rows,
|
| 208 |
+
unique_controls=base_summary.unique_controls,
|
| 209 |
+
min_controls=min_controls, max_controls=max_controls,
|
| 210 |
+
replacement=replacement, caliper=caliper,
|
| 211 |
+
n_strata=None,
|
| 212 |
+
caliper_dropped_treated=base_summary.caliper_dropped_treated,
|
| 213 |
+
)
|
| 214 |
+
return matched, summary
|
| 215 |
+
|
| 216 |
+
def _stratification(
|
| 217 |
+
df: pd.DataFrame,
|
| 218 |
+
ps_col: str,
|
| 219 |
+
treatment_col: str,
|
| 220 |
+
n_strata: int,
|
| 221 |
+
) -> Tuple[pd.DataFrame, MatchSummary]:
|
| 222 |
+
# MODIFIED: Stratification implemented with ATT weights per stratum
|
| 223 |
+
work = df.copy()
|
| 224 |
+
work["__stratum__"] = pd.qcut(work[ps_col], q=n_strata, labels=False, duplicates="drop")
|
| 225 |
+
work["__role__"] = work[treatment_col].apply(lambda x: "treated" if int(x) == 1 else "control")
|
| 226 |
+
work["__match_group__"] = work["__stratum__"]
|
| 227 |
+
|
| 228 |
+
work["__weight__"] = 1.0
|
| 229 |
+
for s in sorted(work["__stratum__"].dropna().unique()):
|
| 230 |
+
sm = work["__stratum__"] == s
|
| 231 |
+
n_treated = int((work.loc[sm, treatment_col] == 1).sum())
|
| 232 |
+
n_control = int((work.loc[sm, treatment_col] == 0).sum())
|
| 233 |
+
if n_treated > 0 and n_control > 0:
|
| 234 |
+
work.loc[sm & (work[treatment_col] == 1), "__weight__"] = 1.0
|
| 235 |
+
work.loc[sm & (work[treatment_col] == 0), "__weight__"] = n_treated / n_control
|
| 236 |
+
else:
|
| 237 |
+
work.loc[sm, "__weight__"] = 1.0 # MODIFIED: if unbalanced stratum, keep neutral weights
|
| 238 |
+
|
| 239 |
+
# Diagnostics — which strata contain both treated and control
|
| 240 |
+
strata_balance = work.groupby("__stratum__")[treatment_col].agg(["sum", "count"])
|
| 241 |
+
balanced_strata = strata_balance[(strata_balance["sum"] > 0) & (strata_balance["sum"] < strata_balance["count"])].index
|
| 242 |
+
work["__balanced_stratum__"] = work["__stratum__"].isin(balanced_strata)
|
| 243 |
+
|
| 244 |
+
treated_count = int((work[treatment_col] == 1).sum())
|
| 245 |
+
control_count = int((work[treatment_col] == 0).sum())
|
| 246 |
+
|
| 247 |
+
summary = MatchSummary(
|
| 248 |
+
method="stratification",
|
| 249 |
+
treated_rows=treated_count,
|
| 250 |
+
control_rows=control_count,
|
| 251 |
+
unique_controls=control_count, # all controls retained
|
| 252 |
+
min_controls=0,
|
| 253 |
+
max_controls=0,
|
| 254 |
+
replacement=True,
|
| 255 |
+
caliper=None,
|
| 256 |
+
n_strata=n_strata,
|
| 257 |
+
)
|
| 258 |
+
return work, summary
|
| 259 |
+
|
| 260 |
+
# -----------------------------
|
| 261 |
+
# Balance + plotting
|
| 262 |
+
# -----------------------------
|
| 263 |
+
|
| 264 |
+
def _standardized_mean_differences(df: pd.DataFrame, treatment_col: str, covariates: List[str]) -> pd.DataFrame:
|
| 265 |
+
# MODIFIED: support optional weighting via "__weight__" if present (for stratification)
|
| 266 |
+
if df is None or len(df) == 0:
|
| 267 |
+
return pd.DataFrame(columns=["variable", "smd", "abs_smd"])
|
| 268 |
+
out = []
|
| 269 |
+
tmask = df[treatment_col] == 1
|
| 270 |
+
cmask = df[treatment_col] == 0
|
| 271 |
+
|
| 272 |
+
has_w = "__weight__" in df.columns
|
| 273 |
+
wt = df["__weight__"] if has_w else None
|
| 274 |
+
|
| 275 |
+
for v in covariates:
|
| 276 |
+
if v not in df.columns: # guard for missing cols
|
| 277 |
+
continue
|
| 278 |
+
a = pd.to_numeric(df.loc[tmask, v], errors="coerce")
|
| 279 |
+
b = pd.to_numeric(df.loc[cmask, v], errors="coerce")
|
| 280 |
+
if has_w:
|
| 281 |
+
wa = pd.to_numeric(wt.loc[tmask], errors="coerce")
|
| 282 |
+
wb = pd.to_numeric(wt.loc[cmask], errors="coerce")
|
| 283 |
+
# Drop NaNs aligned
|
| 284 |
+
am = a.notna() & wa.notna()
|
| 285 |
+
bm = b.notna() & wb.notna()
|
| 286 |
+
a, wa = a[am], wa[am]
|
| 287 |
+
b, wb = b[bm], wb[bm]
|
| 288 |
+
def wmean(x, w):
|
| 289 |
+
sw = float(w.sum())
|
| 290 |
+
return np.nan if sw == 0 else float(np.sum(w * x) / sw)
|
| 291 |
+
def wvar(x, w, mean):
|
| 292 |
+
sw = float(w.sum())
|
| 293 |
+
return np.nan if sw == 0 else float(np.sum(w * (x - mean) ** 2) / sw)
|
| 294 |
+
ma = wmean(a, wa); mb = wmean(b, wb)
|
| 295 |
+
va = wvar(a, wa, ma); vb = wvar(b, wb, mb)
|
| 296 |
+
else:
|
| 297 |
+
ma, mb = a.mean(), b.mean()
|
| 298 |
+
va, vb = a.var(ddof=1), b.var(ddof=1)
|
| 299 |
+
denom = np.sqrt(np.nanmean([va, vb])) if not (np.isnan(va) and np.isnan(vb)) else np.nan
|
| 300 |
+
smd = np.nan if (denom == 0 or np.isnan(denom)) else (ma - mb) / float(denom)
|
| 301 |
+
out.append((v, smd, abs(smd) if pd.notna(smd) else np.nan))
|
| 302 |
+
return pd.DataFrame(out, columns=["variable", "smd", "abs_smd"])
|
| 303 |
+
|
| 304 |
+
def _plot_love_before_after(
|
| 305 |
+
smd_pre: pd.DataFrame,
|
| 306 |
+
smd_post: pd.DataFrame,
|
| 307 |
+
title: str,
|
| 308 |
+
*,
|
| 309 |
+
empty_msg: Optional[str] = None,
|
| 310 |
+
xmax: Optional[float] = None,
|
| 311 |
+
fixed_order: Optional[List[str]] = None
|
| 312 |
+
) -> Image.Image:
|
| 313 |
+
# Reconstructed plotting helper (equivalent to prior version)
|
| 314 |
+
def frame(df: Optional[pd.DataFrame], key: str) -> pd.DataFrame:
|
| 315 |
+
if df is None or df.empty:
|
| 316 |
+
return pd.DataFrame(columns=["variable", key])
|
| 317 |
+
return df[["variable", "abs_smd"]].rename(columns={"abs_smd": key})
|
| 318 |
+
|
| 319 |
+
a = frame(smd_pre, "before")
|
| 320 |
+
b = frame(smd_post, "after")
|
| 321 |
+
m = pd.merge(a, b, on="variable", how="outer")
|
| 322 |
+
m = m[~(m["before"].isna() & m["after"].isna())]
|
| 323 |
+
if m.empty:
|
| 324 |
+
fig, ax = plt.subplots(figsize=(6.5, 3.0))
|
| 325 |
+
ax.text(0.5, 0.5, empty_msg or "No balance data to plot.", ha="center", va="center", transform=ax.transAxes)
|
| 326 |
+
ax.axis("off")
|
| 327 |
+
buf = io.BytesIO(); fig.savefig(buf, format="png", dpi=150, bbox_inches="tight")
|
| 328 |
+
plt.close(fig); buf.seek(0)
|
| 329 |
+
return Image.open(buf)
|
| 330 |
+
|
| 331 |
+
# MODIFIED: stable ordering across methods
|
| 332 |
+
if fixed_order:
|
| 333 |
+
cat = pd.Categorical(m["variable"], categories=fixed_order, ordered=True)
|
| 334 |
+
m = m.assign(_ord=cat).sort_values("_ord").drop(columns=["_ord"])
|
| 335 |
+
else:
|
| 336 |
+
m["_sort"] = m["before"].fillna(-np.inf)
|
| 337 |
+
m.sort_values(["_sort"], ascending=[False], inplace=True)
|
| 338 |
+
m.drop(columns=["_sort"], inplace=True)
|
| 339 |
+
|
| 340 |
+
y = np.arange(len(m))
|
| 341 |
+
fig, ax = plt.subplots(figsize=(7.5, max(3.0, 0.6 * len(m))))
|
| 342 |
+
|
| 343 |
+
for i, row in m.reset_index(drop=True).iterrows():
|
| 344 |
+
bi, ai = row["before"], row["after"]
|
| 345 |
+
if pd.notna(bi) and pd.notna(ai):
|
| 346 |
+
ax.plot([bi, ai], [i, i], linewidth=1)
|
| 347 |
+
|
| 348 |
+
ax.scatter(m["before"], y, label="Before", zorder=3)
|
| 349 |
+
ax.scatter(m["after"], y, label="After", zorder=3, marker="s")
|
| 350 |
+
|
| 351 |
+
ax.set_yticks(y)
|
| 352 |
+
ax.set_yticklabels(m["variable"].tolist())
|
| 353 |
+
ax.invert_yaxis()
|
| 354 |
+
ax.set_xlabel("|SMD|")
|
| 355 |
+
ax.set_title(title)
|
| 356 |
+
ax.axvline(0.10, linestyle="--")
|
| 357 |
+
ax.grid(axis="x", linestyle=":", alpha=0.4)
|
| 358 |
+
|
| 359 |
+
if xmax is not None:
|
| 360 |
+
ax.set_xlim(0, xmax)
|
| 361 |
+
|
| 362 |
+
ax.legend(loc="center left", bbox_to_anchor=(1.02, 0.5), frameon=False)
|
| 363 |
+
fig.tight_layout(rect=[0.0, 0.0, 0.82, 1.0])
|
| 364 |
+
|
| 365 |
+
buf = io.BytesIO(); fig.savefig(buf, format="png", dpi=150, bbox_inches="tight")
|
| 366 |
+
plt.close(fig); buf.seek(0)
|
| 367 |
+
return Image.open(buf)
|
| 368 |
+
|
| 369 |
+
# -----------------------------
|
| 370 |
+
# Public pipeline (legacy)
|
| 371 |
+
# -----------------------------
|
| 372 |
+
|
| 373 |
+
def run_propensity_analysis(
|
| 374 |
+
data: Union[pd.DataFrame, str],
|
| 375 |
+
treatment_col: str,
|
| 376 |
+
feature_cols: List[str],
|
| 377 |
+
outcome_col: str = "",
|
| 378 |
+
matching_method: str = "nearest",
|
| 379 |
+
caliper: Optional[float] = None,
|
| 380 |
+
min_controls: int = 1,
|
| 381 |
+
max_controls: int = 1,
|
| 382 |
+
replacement: bool = True,
|
| 383 |
+
n_strata: int = 5,
|
| 384 |
+
include_balance: bool = True,
|
| 385 |
+
) -> Tuple[str, Optional[Image.Image]]:
|
| 386 |
+
try:
|
| 387 |
+
# Load data
|
| 388 |
+
if isinstance(data, str):
|
| 389 |
+
if data.lower().endswith(".csv"):
|
| 390 |
+
df = pd.read_csv(data)
|
| 391 |
+
else:
|
| 392 |
+
raise ValueError("Only CSV paths are supported when passing a string to `data`.")
|
| 393 |
+
elif isinstance(data, pd.DataFrame):
|
| 394 |
+
df = data.copy()
|
| 395 |
+
else:
|
| 396 |
+
raise ValueError("`data` must be a pandas DataFrame or a CSV file path.")
|
| 397 |
+
|
| 398 |
+
if treatment_col not in df.columns:
|
| 399 |
+
raise ValueError(f"Treatment column '{treatment_col}' not found in data.")
|
| 400 |
+
|
| 401 |
+
covariates_used = _select_features(df, feature_cols, outcome_col if outcome_col else None)
|
| 402 |
+
|
| 403 |
+
# Fit propensity model
|
| 404 |
+
df[treatment_col] = _ensure_binary(df[treatment_col])
|
| 405 |
+
ps, _ = _fit_propensity(df, treatment_col, covariates_used)
|
| 406 |
+
df["__ps__"] = ps
|
| 407 |
+
|
| 408 |
+
# Matching
|
| 409 |
+
method = (matching_method or "nearest").lower()
|
| 410 |
+
matched = pd.DataFrame()
|
| 411 |
+
summary: Optional[MatchSummary] = None
|
| 412 |
+
|
| 413 |
+
if method == "nearest":
|
| 414 |
+
matched, summary = _greedy_nearest(
|
| 415 |
+
df, "__ps__", treatment_col, min_controls, max_controls, replacement, caliper=None # MODIFIED: force pure nearest
|
| 416 |
+
)
|
| 417 |
+
elif method == "caliper":
|
| 418 |
+
if caliper is None or caliper < 0:
|
| 419 |
+
raise ValueError("Caliper matching requires a non-negative `caliper`.")
|
| 420 |
+
matched, summary = _caliper_matching(
|
| 421 |
+
df, "__ps__", treatment_col, min_controls, max_controls, replacement, caliper
|
| 422 |
+
)
|
| 423 |
+
elif method == "stratification":
|
| 424 |
+
matched, summary = _stratification(df, "__ps__", treatment_col, n_strata)
|
| 425 |
+
else:
|
| 426 |
+
raise ValueError("matching_method must be one of {'nearest','caliper','stratification'}.")
|
| 427 |
+
|
| 428 |
+
# Build report
|
| 429 |
+
report_lines = [
|
| 430 |
+
f"Matching Method: {summary.method if summary else method}",
|
| 431 |
+
f"Knobs -> min_controls={summary.min_controls if summary else min_controls}, "
|
| 432 |
+
f"max_controls={summary.max_controls if summary else max_controls}, "
|
| 433 |
+
f"replacement={summary.replacement if summary else replacement}, "
|
| 434 |
+
f"caliper={summary.caliper if summary else caliper}, "
|
| 435 |
+
f"n_strata={summary.n_strata if summary else (n_strata if method=='stratification' else None)}",
|
| 436 |
+
f"Matched counts -> treated_rows={summary.treated_rows if summary else 0}, "
|
| 437 |
+
f"control_rows={summary.control_rows if summary else 0}, "
|
| 438 |
+
f"unique_controls={summary.unique_controls if summary else 0}",
|
| 439 |
+
]
|
| 440 |
+
|
| 441 |
+
if summary and summary.caliper is not None:
|
| 442 |
+
binding = bool(summary.caliper_dropped_treated > 0)
|
| 443 |
+
report_lines.append(f"caliper_dropped_treated={summary.caliper_dropped_treated}")
|
| 444 |
+
report_lines.append(f"caliper_binding={'True' if binding else 'False'}")
|
| 445 |
+
|
| 446 |
+
love_img = None
|
| 447 |
+
if include_balance:
|
| 448 |
+
smd_pre = _standardized_mean_differences(df, treatment_col, covariates_used)
|
| 449 |
+
smd_post = _standardized_mean_differences(matched, treatment_col, covariates_used) if not matched.empty else pd.DataFrame()
|
| 450 |
+
|
| 451 |
+
# MODIFIED: compute unified x-axis from PRE (identical across methods) + small headroom
|
| 452 |
+
if not smd_pre.empty and smd_pre["abs_smd"].notna().any():
|
| 453 |
+
max_pre = float(np.nanmax(smd_pre["abs_smd"]))
|
| 454 |
+
xmax = max(0.10, max_pre) * 1.1
|
| 455 |
+
else:
|
| 456 |
+
xmax = 0.5 # safe fallback
|
| 457 |
+
|
| 458 |
+
# MODIFIED: fixed order = by PRE imbalance ensures all methods align
|
| 459 |
+
fixed_order = smd_pre.sort_values("abs_smd", ascending=False)["variable"].tolist()
|
| 460 |
+
|
| 461 |
+
love_img = _plot_love_before_after(
|
| 462 |
+
smd_pre, smd_post,
|
| 463 |
+
title=f"Love Plot — {summary.method.title() if summary else method.title()} Matching",
|
| 464 |
+
empty_msg="No matched sample to assess." if matched.empty else None,
|
| 465 |
+
xmax=xmax, # MODIFIED
|
| 466 |
+
fixed_order=fixed_order # MODIFIED
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
preview = (smd_post if not smd_post.empty else smd_pre).sort_values("abs_smd", ascending=False).head(10)
|
| 470 |
+
report_lines.append("\nBalance (|SMD|) summary (first 10):")
|
| 471 |
+
for _, r in preview.iterrows():
|
| 472 |
+
val = (np.round(r["abs_smd"], 4) if pd.notna(r["abs_smd"]) else "NaN")
|
| 473 |
+
report_lines.append(f" {r['variable']}: {val}")
|
| 474 |
+
|
| 475 |
+
return "\n".join(report_lines), love_img
|
| 476 |
+
|
| 477 |
+
except Exception as e:
|
| 478 |
+
return f"An unexpected error occurred: {e}", None
|
| 479 |
+
|
| 480 |
+
# -----------------------------
|
| 481 |
+
# MODIFIED: Data export helpers for v2 (Edges & Units)
|
| 482 |
+
# -----------------------------
|
| 483 |
+
|
| 484 |
+
_EDGES_COLUMNS = [
|
| 485 |
+
"method", "group_id", "treated_unit_id", "control_unit_id",
|
| 486 |
+
"neighbor_rank", "distance", "edge_weight",
|
| 487 |
+
"replacement", "min_controls", "max_controls", "caliper", "n_strata"
|
| 488 |
+
] # MODIFIED
|
| 489 |
+
|
| 490 |
+
def _build_edges_units_nearest_caliper( # MODIFIED: new helper builds export frames
|
| 491 |
+
df: pd.DataFrame,
|
| 492 |
+
ps_col: str,
|
| 493 |
+
treatment_col: str,
|
| 494 |
+
min_controls: int,
|
| 495 |
+
max_controls: int,
|
| 496 |
+
replacement: bool,
|
| 497 |
+
caliper: Optional[float],
|
| 498 |
+
method: str,
|
| 499 |
+
) -> Tuple[pd.DataFrame, pd.DataFrame, MatchSummary]:
|
| 500 |
+
work = df.copy()
|
| 501 |
+
work["__unit_id__"] = np.arange(len(work)) # MODIFIED: stable integer id derived from row order
|
| 502 |
+
treated = work[work[treatment_col] == 1].copy()
|
| 503 |
+
control = work[work[treatment_col] == 0].copy()
|
| 504 |
+
|
| 505 |
+
used = set()
|
| 506 |
+
edges_records: List[Dict] = []
|
| 507 |
+
dropped_due_to_caliper = 0
|
| 508 |
+
|
| 509 |
+
# Build edges per treated → top-K nearest controls (respect replacement & optional caliper)
|
| 510 |
+
for _, t in treated.iterrows():
|
| 511 |
+
diffs = control.copy()
|
| 512 |
+
diffs["__dist__"] = (diffs[ps_col] - t[ps_col]).abs()
|
| 513 |
+
if caliper is not None and caliper >= 0:
|
| 514 |
+
diffs = diffs[diffs["__dist__"] <= caliper]
|
| 515 |
+
if not replacement:
|
| 516 |
+
diffs = diffs[~diffs["__unit_id__"].isin(used)]
|
| 517 |
+
diffs = diffs.sort_values("__dist__", ascending=True).head(max_controls)
|
| 518 |
+
|
| 519 |
+
if len(diffs) < min_controls:
|
| 520 |
+
if caliper is not None and caliper >= 0:
|
| 521 |
+
dropped_due_to_caliper += 1
|
| 522 |
+
continue
|
| 523 |
+
|
| 524 |
+
# neighbor_rank assigned in sorted order
|
| 525 |
+
for rank, (_, crow) in enumerate(diffs.iterrows(), start=1):
|
| 526 |
+
edges_records.append({
|
| 527 |
+
"method": method,
|
| 528 |
+
"group_id": int(t["__unit_id__"]),
|
| 529 |
+
"treated_unit_id": int(t["__unit_id__"]),
|
| 530 |
+
"control_unit_id": int(crow["__unit_id__"]),
|
| 531 |
+
"neighbor_rank": int(rank),
|
| 532 |
+
"distance": float(crow["__dist__"]),
|
| 533 |
+
# edge_weight filled later after we know k-per-group
|
| 534 |
+
"edge_weight": np.nan,
|
| 535 |
+
"replacement": bool(replacement),
|
| 536 |
+
"min_controls": int(min_controls),
|
| 537 |
+
"max_controls": int(max_controls),
|
| 538 |
+
"caliper": (float(caliper) if caliper is not None else np.nan),
|
| 539 |
+
"n_strata": np.nan,
|
| 540 |
+
})
|
| 541 |
+
if not replacement:
|
| 542 |
+
used.add(int(crow["__unit_id__"]))
|
| 543 |
+
|
| 544 |
+
if not edges_records:
|
| 545 |
+
# Empty frames with proper schema
|
| 546 |
+
edges_df = pd.DataFrame(columns=_EDGES_COLUMNS)
|
| 547 |
+
units_df = pd.DataFrame(columns=["unit_id", "role", "ps", "treatment", "group_id", "method",
|
| 548 |
+
"replacement", "min_controls", "max_controls", "caliper", "n_strata"])
|
| 549 |
+
summary = MatchSummary(method=method, treated_rows=0, control_rows=0, unique_controls=0,
|
| 550 |
+
min_controls=min_controls, max_controls=max_controls,
|
| 551 |
+
replacement=replacement, caliper=caliper, n_strata=None,
|
| 552 |
+
caliper_dropped_treated=dropped_due_to_caliper)
|
| 553 |
+
return units_df, edges_df, summary
|
| 554 |
+
|
| 555 |
+
edges_df = pd.DataFrame.from_records(edges_records)[_EDGES_COLUMNS]
|
| 556 |
+
|
| 557 |
+
# Fill edge_weight = 1/k within each treated group (synthetic control equal weights)
|
| 558 |
+
sizes = edges_df.groupby("group_id")["control_unit_id"].transform("count")
|
| 559 |
+
edges_df["edge_weight"] = 1.0 / sizes
|
| 560 |
+
|
| 561 |
+
included_groups = edges_df["group_id"].unique()
|
| 562 |
+
# Treated rows (one per group)
|
| 563 |
+
tre = work[work["__unit_id__"].isin(included_groups)].copy()
|
| 564 |
+
tre_df = tre.assign(
|
| 565 |
+
unit_id=tre["__unit_id__"].astype(int),
|
| 566 |
+
role="treated",
|
| 567 |
+
ps=tre[ps_col].astype(float),
|
| 568 |
+
treatment=1,
|
| 569 |
+
group_id=tre["__unit_id__"].astype(int),
|
| 570 |
+
method=method,
|
| 571 |
+
replacement=bool(replacement),
|
| 572 |
+
min_controls=int(min_controls),
|
| 573 |
+
max_controls=int(max_controls),
|
| 574 |
+
caliper=(float(caliper) if caliper is not None else np.nan),
|
| 575 |
+
n_strata=np.nan,
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
# Controls (one row per edge, allows replacement across groups)
|
| 579 |
+
ctrl_rows = []
|
| 580 |
+
for _, e in edges_df.iterrows():
|
| 581 |
+
c = work.loc[work["__unit_id__"] == e["control_unit_id"]].iloc[0]
|
| 582 |
+
ctrl_rows.append({
|
| 583 |
+
**{col: c[col] for col in work.columns}, # original columns
|
| 584 |
+
"unit_id": int(c["__unit_id__"]),
|
| 585 |
+
"role": "control",
|
| 586 |
+
"ps": float(c[ps_col]),
|
| 587 |
+
"treatment": 0,
|
| 588 |
+
"group_id": int(e["group_id"]),
|
| 589 |
+
"method": method,
|
| 590 |
+
"replacement": bool(replacement),
|
| 591 |
+
"min_controls": int(min_controls),
|
| 592 |
+
"max_controls": int(max_controls),
|
| 593 |
+
"caliper": (float(caliper) if caliper is not None else np.nan),
|
| 594 |
+
"n_strata": np.nan,
|
| 595 |
+
})
|
| 596 |
+
ctrl_df = pd.DataFrame(ctrl_rows) if ctrl_rows else pd.DataFrame(columns=list(tre_df.columns))
|
| 597 |
+
|
| 598 |
+
base_cols = [c for c in work.columns if not c.startswith("__")]
|
| 599 |
+
export_cols = ["unit_id", "role", "ps", "treatment", "group_id", "method",
|
| 600 |
+
"replacement", "min_controls", "max_controls", "caliper", "n_strata"]
|
| 601 |
+
tre_df = tre_df[base_cols + export_cols]
|
| 602 |
+
if not ctrl_df.empty:
|
| 603 |
+
ctrl_df = ctrl_df[base_cols + export_cols]
|
| 604 |
+
units_df = pd.concat([tre_df, ctrl_df], ignore_index=True)
|
| 605 |
+
|
| 606 |
+
summary = MatchSummary(
|
| 607 |
+
method=method,
|
| 608 |
+
treated_rows=tre_df.shape[0],
|
| 609 |
+
control_rows=ctrl_df.shape[0],
|
| 610 |
+
unique_controls=int(edges_df["control_unit_id"].nunique()),
|
| 611 |
+
min_controls=min_controls,
|
| 612 |
+
max_controls=max_controls,
|
| 613 |
+
replacement=replacement,
|
| 614 |
+
caliper=caliper,
|
| 615 |
+
n_strata=None,
|
| 616 |
+
caliper_dropped_treated=dropped_due_to_caliper,
|
| 617 |
+
)
|
| 618 |
+
return units_df, edges_df, summary
|
| 619 |
+
|
| 620 |
+
def _build_units_stratification( # MODIFIED: new helper for stratification exports
|
| 621 |
+
df: pd.DataFrame,
|
| 622 |
+
ps_col: str,
|
| 623 |
+
treatment_col: str,
|
| 624 |
+
n_strata: int,
|
| 625 |
+
) -> Tuple[pd.DataFrame, pd.DataFrame, MatchSummary]:
|
| 626 |
+
work = df.copy()
|
| 627 |
+
work["__unit_id__"] = np.arange(len(work))
|
| 628 |
+
strat_df, summary = _stratification(work, ps_col, treatment_col, n_strata)
|
| 629 |
+
|
| 630 |
+
base_cols = [c for c in strat_df.columns if not c.startswith("__")] + ["__unit_id__"]
|
| 631 |
+
units = strat_df.copy()
|
| 632 |
+
units = units.assign(
|
| 633 |
+
unit_id=units["__unit_id__"].astype(int),
|
| 634 |
+
role=units["__role__"],
|
| 635 |
+
ps=units[ps_col].astype(float),
|
| 636 |
+
treatment=units[treatment_col].astype(int),
|
| 637 |
+
group_id=units["__stratum__"].astype(int),
|
| 638 |
+
method="stratification",
|
| 639 |
+
replacement=True,
|
| 640 |
+
min_controls=0,
|
| 641 |
+
max_controls=0,
|
| 642 |
+
caliper=np.nan,
|
| 643 |
+
n_strata=int(n_strata),
|
| 644 |
+
weight=units["__weight__"].astype(float),
|
| 645 |
+
balanced_stratum=units["__balanced_stratum__"].astype(bool),
|
| 646 |
+
stratum=units["__stratum__"].astype(int),
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
# Order and drop helpers
|
| 650 |
+
keep_export = [c for c in base_cols if c != "__unit_id__"] + [
|
| 651 |
+
"unit_id", "role", "ps", "treatment", "group_id", "method",
|
| 652 |
+
"replacement", "min_controls", "max_controls", "caliper", "n_strata",
|
| 653 |
+
"weight", "balanced_stratum", "stratum"
|
| 654 |
+
]
|
| 655 |
+
units_df = units[keep_export]
|
| 656 |
+
edges_df = pd.DataFrame(columns=_EDGES_COLUMNS) # no combinatorial pairings for stratification
|
| 657 |
+
return units_df, edges_df, summary
|
| 658 |
+
|
| 659 |
+
# -----------------------------
|
| 660 |
+
# API returning exportable DataFrames
|
| 661 |
+
# -----------------------------
|
| 662 |
+
|
| 663 |
+
def run_propensity_analysis_v2( # MODIFIED: new function; keeps legacy API intact
|
| 664 |
+
data: Union[pd.DataFrame, str],
|
| 665 |
+
treatment_col: str,
|
| 666 |
+
feature_cols: List[str],
|
| 667 |
+
outcome_col: str = "",
|
| 668 |
+
matching_method: str = "nearest",
|
| 669 |
+
caliper: Optional[float] = None,
|
| 670 |
+
min_controls: int = 1,
|
| 671 |
+
max_controls: int = 1,
|
| 672 |
+
replacement: bool = True,
|
| 673 |
+
n_strata: int = 5,
|
| 674 |
+
include_balance: bool = True,
|
| 675 |
+
return_dataframes: bool = True,
|
| 676 |
+
) -> Tuple[str, Optional[Image.Image], Optional[pd.DataFrame], Optional[pd.DataFrame]]:
|
| 677 |
+
"""
|
| 678 |
+
Returns:
|
| 679 |
+
report (str), love_plot (PIL.Image or None), units_df (or None), edges_df (or None)
|
| 680 |
+
"""
|
| 681 |
+
# Load data (same behavior as legacy)
|
| 682 |
+
if isinstance(data, str):
|
| 683 |
+
if data.lower().endswith(".csv"):
|
| 684 |
+
df = pd.read_csv(data)
|
| 685 |
+
else:
|
| 686 |
+
raise ValueError("Only CSV paths are supported when passing a string to `data`.")
|
| 687 |
+
elif isinstance(data, pd.DataFrame):
|
| 688 |
+
df = data.copy()
|
| 689 |
+
else:
|
| 690 |
+
raise ValueError("`data` must be a pandas DataFrame or a CSV file path.")
|
| 691 |
+
|
| 692 |
+
if treatment_col not in df.columns:
|
| 693 |
+
raise ValueError(f"Treatment column '{treatment_col}' not found in data.")
|
| 694 |
+
|
| 695 |
+
# Prepare covariates and PS
|
| 696 |
+
covariates_used = _select_features(df, feature_cols, outcome_col if outcome_col else None)
|
| 697 |
+
df[treatment_col] = _ensure_binary(df[treatment_col])
|
| 698 |
+
ps, _ = _fit_propensity(df, treatment_col, covariates_used)
|
| 699 |
+
df["__ps__"] = ps
|
| 700 |
+
|
| 701 |
+
method = (matching_method or "nearest").lower()
|
| 702 |
+
units_df: Optional[pd.DataFrame] = None
|
| 703 |
+
edges_df: Optional[pd.DataFrame] = None
|
| 704 |
+
|
| 705 |
+
# Build export frames by method (correct multi-match semantics)
|
| 706 |
+
if method == "nearest":
|
| 707 |
+
units_df, edges_df, _ = _build_edges_units_nearest_caliper(
|
| 708 |
+
df, "__ps__", treatment_col, min_controls, max_controls, replacement, caliper=None, method="nearest"
|
| 709 |
+
)
|
| 710 |
+
elif method == "caliper":
|
| 711 |
+
if caliper is None or caliper < 0:
|
| 712 |
+
raise ValueError("Caliper matching requires a non-negative `caliper`.")
|
| 713 |
+
units_df, edges_df, _ = _build_edges_units_nearest_caliper(
|
| 714 |
+
df, "__ps__", treatment_col, min_controls, max_controls, replacement, caliper=caliper, method="caliper"
|
| 715 |
+
)
|
| 716 |
+
elif method == "stratification":
|
| 717 |
+
units_df, edges_df, _ = _build_units_stratification(df, "__ps__", treatment_col, n_strata=n_strata)
|
| 718 |
+
else:
|
| 719 |
+
raise ValueError("matching_method must be one of {'nearest','caliper','stratification'}.")
|
| 720 |
+
|
| 721 |
+
# Produce report + plot using the legacy function to preserve visuals/diagnostics
|
| 722 |
+
report, love_img = run_propensity_analysis(
|
| 723 |
+
data=df, # already a DataFrame with __ps__
|
| 724 |
+
treatment_col=treatment_col,
|
| 725 |
+
feature_cols=feature_cols or [],
|
| 726 |
+
outcome_col=outcome_col or "",
|
| 727 |
+
matching_method=method,
|
| 728 |
+
caliper=(caliper if method == "caliper" else None),
|
| 729 |
+
min_controls=min_controls if method in ("nearest", "caliper") else 0,
|
| 730 |
+
max_controls=max_controls if method in ("nearest", "caliper") else 0,
|
| 731 |
+
replacement=replacement if method in ("nearest", "caliper") else True,
|
| 732 |
+
n_strata=n_strata if method == "stratification" else 5,
|
| 733 |
+
include_balance=include_balance,
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
return report, love_img, (units_df if return_dataframes else None), (edges_df if return_dataframes else None)
|