import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os import base64 import fitz # PyMuPDF # Load environment variables load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="google/gemma-1.1-7b-it", tokenizer_name="google/gemma-1.1-7b-it", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def displayPDF(file): # Open the PDF file pdf_document = fitz.open(file) # Render the first page first_page = pdf_document.load_page(0) # Convert the page to an image pix = first_page.get_pixmap() # Save the image image_path = "first_page.png" pix.save(image_path) # Display the image in Streamlit st.image(image_path) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q/A Scientific Assistant.Be very careful and answer in detail. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) if hasattr(answer, 'response'): return answer.response elif isinstance(answer, dict) and 'response' in answer: return answer['response'] else: return "Sorry, I couldn't find an answer." # Streamlit app initialization st.title("RAG Extractor") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello I am Pingu! Upload a PDF and ask me anything about its content.'}] # Define your custom icon custom_icon_url = "custom_icon.jpeg" # Adjust this to your icon's file path with st.sidebar: st.title("Input") uploaded_file = st.file_uploader("Upload your PDF Files and then click on the Submit & Process Button") if st.button("Submit & Process"): with st.spinner("Loading..."): filepath = "data/saved_pdf.pdf" with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) data_ingestion() # Process PDF every time new file is uploaded st.success("PDF is ready!") displayPDF(filepath) user_prompt = st.chat_input("Ask me anything about the content of the PDF:") if user_prompt: st.session_state.messages.append({'role': 'user', "content": user_prompt}) response = handle_query(user_prompt) st.session_state.messages.append({'role': 'assistant', "content": response}) for message in st.session_state.messages: with st.chat_message(message['role']): st.write(message['content'])