import gradio as gr from fastai.vision.all import * import skimage title = "Homer or Peter" examples = ["homer_1.jpg", "homer_2.jpg", "homer_3.jpg", "peter_1.jpg", "peter_2.jpg"] interpretation='default' enable_queue=True learn = load_learner('homer-or-peter.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.components.Image(shape=(512, 512)), outputs=gr.components.Label(num_top_classes=3), title=title, examples=examples, interpretation=interpretation ).launch(enable_queue=enable_queue)