import gradio as gr from fastai.vision.all import * # def greet(name): # return "Hello " + name + "!!" title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article="

Blog post

" interpretation='default' enable_queue=True learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i] for i in range(len(labels)))} iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True) iface.launch()