from fastapi import FastAPI, File, UploadFile import io from PIL import Image from fastapi.responses import FileResponse from fastapi.staticfiles import StaticFiles from pathlib import Path import torchvision.transforms as transforms import mnist_classifier app = FastAPI() app.mount("/static", StaticFiles(directory=Path("static")), name="static") @app.get("/") async def root(): return FileResponse("static/index.html") def process_image(file: UploadFile): image_bytes = file.file.read() pil_image = Image.open(io.BytesIO(image_bytes)) transform = transforms.Compose([ transforms.Resize((28, 28)), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), ]) tensor_image = transform(pil_image) return tensor_image @app.post("/predict") async def predict(image: UploadFile): tensor_image = process_image(image) prediction = mnist_classifier.predict(tensor_image) return {"prediction": prediction}