import streamlit as st import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from spacy import displacy from spacy.lang.en import English from spacy.matcher import PhraseMatcher from spacy.tokens import Span from negspacy.negation import Negex #import en_ner_bc5cdr_md import re from streamlit.components.v1 import html # Store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False #nlp = en_core_web_lg.load() nlp = spacy.load("en_ner_bc5cdr_md") nlp0 = spacy.load("en_ner_bc5cdr_md") nlp1 = spacy.load("en_ner_bc5cdr_md") st.set_page_config(page_title ='Clinical Note Summarization', #page_icon= "Notes", layout='wide') st.title('Clinical Note Summarization') st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown('Using transformer model') ## Loading in dataset df = pd.read_csv('shpi25nov.csv') #Loading in Admission chief Complaint and diagnosis df2 = pd.read_csv('cohort_cc_adm_diag.csv') #Loading in Dischare History df3 = pd.read_csv('cohort_past_history_12072022.csv') #combining both data into one df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID']) df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) del df2 #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) df3.rename(columns={'SUBJECT_ID':'Patient_ID'}, inplace = True) #data.rename(columns={'gdp':'log(gdp)'}, inplace=True) #Filter selection st.sidebar.header("Search for Patient:") patientid = df['Patient_ID'] patient = st.sidebar.selectbox('Select Patient ID:', patientid) admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] HospitalAdmission = st.sidebar.selectbox(' ', admissionid) # List of Model available model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") runtext = '' inputNote ='Input note here:' # Query out relevant Clinical notes original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) pastHistory = df3.query( "Patient_ID == @patient & INDEX_HADM_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values diagnosis =original_text['DIAGNOSIS'].values reference_text = original_text['Reference_text'].values pastHistoryEp = pastHistory['HADM_ID'].values ##========= Buttons to the 5 tabs ======== Temp disabled Discharge Plan and Social Notes ##col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1]) -- to uncomment and comment below line to include discharge plan and social notes col1, col2, col5 = st.columns([1,1,1]) col6, col7, col8 =st.columns([2,2,2]) with st.container(): with col1: btnAdmission = st.button("🏥 Admission") if btnAdmission: #nav_page('Admission') inputNote = "Input Admission Note" with col2: btnDailyNarrative = st.button('📆Daily Narrative') if btnDailyNarrative: inputNote = "Input Daily Narrative Note" # with col3: # btnDischargePlan = st.button('🗒️Discharge Plan') # if btnDischargePlan: # inputNote = "Input Discharge Plan" # with col4: # btnSocialNotes = st.button('📝Social Notes') # if btnSocialNotes: # inputNote = "Input Social Note" with col5: btnPastHistory = st.button('📇Past History (6 Mths)') if btnPastHistory: inputNote = "Input History records" if btnPastHistory: st.text_area('Past History','Date of discharge: xxxxxxxxx') else: runtext =st.text_area(inputNote, str(original_text2), height=300) with st.container(): if btnPastHistory: with col6: st.markdown('**No. of admission past 6 months: xx**') with col7: st.text_area('Discharge Disposition:',' ', height=8) #to replace with dropdown list if data is available with col8: #st.date_input('Select Admission Date') # To replace with a dropdown filter instead #st.selectbox('Past Episodes',pastHistoryEp) st.write(pastHistoryEp) # Extract words associated with each entity def genEntities(ann, entity): # entity colour dict #ent_col = {'DISEASE':'#B42D1B', 'CHEMICAL':'#F06292'} ent_col = {'DISEASE':'pink', 'CHEMICAL':'orange'} # separate into the different entities entities = trans_df['Class'].unique() if entity in entities: ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique()) entlist = ",".join(ent) st.markdown(f'
{entlist}
', unsafe_allow_html=True) ##======================== Start of NER Tagging ======================== #lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying) def lemmatize(note, nlp): doc = nlp(note) lemNote = [wd.lemma_ for wd in doc] return " ".join(lemNote) #function to modify options for displacy NER visualization def get_entity_options(): entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"] colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'} options = {"ents": entities, "colors": colors} return options #adding a new pipeline component to identify negation def neg_model(nlp_model): nlp = spacy.load(nlp_model, disable = ['parser']) # nlp.add_pipe(nlp.create_pipe('sentencizer')) nlp.add_pipe('sentencizer') # negex = Negex(nlp) nlp.add_pipe( "negex", config={ "chunk_prefix": ["no"], }, last=True) return nlp def negation_handling(nlp_model, note, neg_model): results = [] nlp = neg_model(nlp_model) note = note.split(".") #sentence tokenizing based on delimeter note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence for t in note: doc = nlp(t) for e in doc.ents: rs = str(e._.negex) if rs == "True": results.append(e.text) return results #function to identify span objects of matched negative phrases from text def match(nlp,terms,label): patterns = [nlp.make_doc(text) for text in terms] matcher = PhraseMatcher(nlp.vocab) matcher.add(label, None, *patterns) return matcher #replacing the labels for identified negative entities def overwrite_ent_lbl(matcher, doc): matches = matcher(doc) seen_tokens = set() new_entities = [] entities = doc.ents for match_id, start, end in matches: if start not in seen_tokens and end - 1 not in seen_tokens: new_entities.append(Span(doc, start, end, label=match_id)) entities = [e for e in entities if not (e.start < end and e.end > start)] seen_tokens.update(range(start, end)) doc.ents = tuple(entities) + tuple(new_entities) return doc #deduplicate repeated entities def dedupe(items): seen = set() for item in items: item = str(item).strip() if item not in seen: yield item seen.add(item) lem_clinical_note= lemmatize(runtext, nlp0) #creating a doc object using BC5CDR model doc = nlp1(lem_clinical_note) options = get_entity_options() #list of negative concepts from clinical note identified by negspacy results0 = negation_handling("en_ner_bc5cdr_md", lem_clinical_note, neg_model) matcher = match(nlp1, results0,"NEG_ENTITY") #doc0: new doc object with added "NEG_ENTITY label" doc0 = overwrite_ent_lbl(matcher,doc) #visualizing identified Named Entities in clinical input text ent_html = displacy.render(doc0, style='ent', options=options) ##======================== End of NER Tagging ======================== def run_model(input_text): if model == "BertSummarizer": output = original_text['BertSummarizer2s'].values st.write('Summary') elif model == "BertGPT2": output = original_text['BertGPT2'].values st.write('Summary') elif model == "t5seq2eq": output = original_text['t5seq2eq'].values st.write('Summary') elif model == "t5": output = original_text['t5'].values st.write('Summary') elif model == "gensim": output = original_text['gensim'].values st.write('Summary') elif model == "pysummarizer": output = original_text['pysummarizer'].values st.write('Summary') st.success(output) # ====== Old NER ====== #doc = nlp(str(original_text2)) #colors = { "DISEASE": "pink","CHEMICAL": "orange"} #options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors} #ent_html = displacy.render(doc, style="ent", options=options) # ====== End of Old NER ====== col1, col2 = st.columns([1,1]) with col1: if not(btnPastHistory): #to not show summary and references text for Past History st.button('Summarize') run_model(runtext) #sentences=runtext.split('.') st.text_area('Reference text', str(reference_text), height=150) else: with st.expander('Full Discharge Summary'): st.write( str(original_text2)) ##====== Storing the Diseases/Text table= {"Entity":[], "Class":[]} ent_bc = {} for x in doc.ents: ent_bc[x.text] = x.label_ for key in ent_bc: table["Entity"].append(key) table["Class"].append(ent_bc[key]) trans_df = pd.DataFrame(table) with col2: if st.button('NER'): st.markdown('**CHIEF COMPLAINT:**') st.write(str(AdmissionChiefCom)) st.markdown('**ADMISSION DIAGNOSIS:**') st.markdown(str(diagnosis)) st.markdown('**PROBLEM/ISSUE**') genEntities(trans_df, 'DISEASE') st.markdown('**MEDICATION**') genEntities(trans_df, 'CHEMICAL') #st.table(trans_df) st.markdown('**NER**') with st.expander("See NER Details"): st.markdown(ent_html, unsafe_allow_html=True)