import argparse from hay.retriever import generate_docs from hay.pipeline import rg_pipeline, rs_pipeline, rsg_pipeline from app import application d = 'data' def main(): parser = argparse.ArgumentParser() parser.add_argument( '--docs', dest='docs', action = 'store_true' ) parser.add_argument( '--rgpipeline', dest='rgpipeline', action = 'store_true' ) parser.add_argument( '--rspipeline', dest='rspipeline', action='store_true' ) parser.add_argument( '--conv', dest='conv', action='store_true' ) parser.add_argument( '--gradio', dest='gradio', action='store_true' ) args = parser.parse_args() if args.docs: ''' Use this argument to generate the docs and store in DOCUMENT format ''' generate_docs(overlap=10, length=100, d=d) if args.rgpipeline: ''' Use this argument to run the base retriever generator pipeline ''' question = "How to reduce emissions?" rg_pipeline(question, d) if args.rspipeline: ''' Use this argument to run the retriever summarizer pipeline ''' question = "Who are the main users in the two-sided market" # question = "What are the decisions made in the two-sided market? And who makes this decision? " # question = "What are the main effects in the two-sided market?" # question = "What are the main topics in these papers?" answer = rs_pipeline(question, d) print(answer) if args.conv: ''' Use this argument to run the pipeline using conversational agent class ''' op = rsg_pipeline() print(op) if args.gradio: ''' Use this argument to run the application ''' application() return None if __name__ == '__main__': main()