# import gradio as gr # from transformers.utils import logging # logging.set_verbosity_error() # import warnings # warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") # from transformers import BlipForQuestionAnswering # from transformers import AutoProcessor # def qa(image, question): # model = BlipForQuestionAnswering.from_pretrained( # "./models/Salesforce/blip-vqa-base") # processor = AutoProcessor.from_pretrained( # "./models/Salesforce/blip-vqa-base") # inputs = processor(image, question, return_tensors="pt") # out = model.generate(image, question) # result = processor.decode(out[0], skip_special_tokens=True) # return result # # def greet(name): # # return "Hello " + name + "!!" # iface = gr.Interface(fn=qa, inputs=["image","text"], outputs="textbox") # iface.launch() import gradio as gr from transformers.utils import logging from transformers import BlipForQuestionAnswering, AutoProcessor logging.set_verbosity_error() import warnings warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") def qa(image, question): model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") inputs = processor(image=image, question=question, return_tensors="pt") out = model.generate(**inputs) result = processor.decode(out[0], skip_special_tokens=True) return result iface = gr.Interface(fn=qa, inputs=["image", "text"], outputs="textbox") iface.launch()