from transformers import DetrImageProcessor, DetrForObjectDetection from transformers import BlipProcessor, BlipForConditionalGeneration import torch from PIL import Image import requests import gradio as gr box_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") box_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") def predict_bounding_boxes(imageurl:str): try: response = requests.get(imageurl, stream=True) response.raise_for_status() image_data = Image.open(response.raw) inputs = box_processor(images=image_data, return_tensors="pt") outputs = box_model(**inputs) target_sizes = torch.tensor([image_data.size[::-1]]) results = box_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.70)[0] detections = [{"score": score.item(), "label": box_model.config.id2label[label.item()], "box": box.tolist()} for score, label, box in zip(results["scores"], results["labels"], results["boxes"])] raw_image = image_data.convert('RGB') inputs = caption_processor(raw_image, return_tensors="pt") out = caption_model.generate(**inputs) label = caption_processor.decode(out[0], skip_special_tokens=True) return {"image label": label, "detections": detections} except Exception as e: return {"error": str(e)} app = gr.Interface(fn=predict_bounding_boxes, inputs="text", outputs="json") app.api = True app.launch()