import streamlit as st import langchain_core from langchain_core.messages import AIMessage, HumanMessage from langchain_community.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma # from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.chains import create_history_aware_retriever, create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.llms import CTransformers from ctransformers import AutoModelForCausalLM from langchain.llms import HuggingFaceHub from transformers import AutoModelForCausalLM, AutoTokenizer from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFacePipeline import os import transformers import torch # from langchain_retrieval import BaseRetrieverChain # from dotenv import load_dotenv # load_dotenv() def get_vector_store_from_url(url): # model_name = "BAAI/bge-large-en" # model_kwargs = {'device': 'cpu'} # encode_kwargs = {'normalize_embeddings': False} # embeddings = HuggingFaceBgeEmbeddings( # model_name=model_name, # model_kwargs=model_kwargs, # encode_kwargs=encode_kwargs # ) embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-large', model_kwargs={'device': 'cpu'}) loader = WebBaseLoader(url) document = loader.load() # split the document into chunks text_splitter = RecursiveCharacterTextSplitter() document_chunks = text_splitter.split_documents(document) # create a vectorstore from the chunks # vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings()) vector_store = Chroma.from_documents(document_chunks, embeddings) return vector_store def get_context_retriever_chain(vector_store,llm): # llm = ChatOpenAI() llm = llm retriever = vector_store.as_retriever() prompt = ChatPromptTemplate.from_messages([ MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") ]) retriever_chain = create_history_aware_retriever(llm, retriever, prompt) return retriever_chain # def get_conversational_rag_chain(retriever_chain,llm): # llm=llm # template = "Answer the user's questions based on the below context:\n\n{context}" # human_template = "{input}" # prompt = ChatPromptTemplate.from_messages([ # ("system", template), # MessagesPlaceholder(variable_name="chat_history"), # ("user", human_template), # ]) # stuff_documents_chain = create_stuff_documents_chain(llm,prompt) # return create_retrieval_chain(retriever_chain, stuff_documents_chain) def get_conversational_rag_chain(retriever_chain,llm): if not retriever_chain: raise ValueError("`retriever_chain` cannot be None or an empty object.") template = "Answer the user's questions based on the below context:\n\n{context}" human_template = "{input}" prompt = ChatPromptTemplate.from_messages([ ("system", template), MessagesPlaceholder(variable_name="chat_history"), ("user", human_template), ]) def safe_llm(input_str: str) -> str: if isinstance(input_str, langchain_core.prompts.chat.ChatPromptValue): input_str = str(input_str) # Call the original llm, which should now work correctly return llm(input_str) stuff_documents_chain = create_stuff_documents_chain(safe_llm, prompt) return create_retrieval_chain(retriever_chain, stuff_documents_chain) def get_response(user_input): # llm = CTransformers( # # model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF", # model= "TheBloke/Llama-2-7B-Chat-GGUF", # model_file = "llama-2-7b-chat.Q3_K_S.gguf", # model_type="llama", # max_new_tokens = 300, # temperature = 0.3, # lib="avx2", # for CPU # ) # model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # # llm = HuggingFaceHub( # # repo_id=llm_model, # # model_kwargs={"temperature": 0.3, "max_new_tokens": 250, "top_k": 3} # # ) # llm = transformers.AutoModelForCausalLM.from_pretrained( # model_name, # trust_remote_code=True, # torch_dtype=torch.bfloat16, # device_map='auto' # ) # llm = HuggingFacePipeline.from_model_id( # model_id="google/flan-t5-base", # task="text2text-generation", # # model_kwargs={"temperature": 0.2}, # ) llm = HuggingFacePipeline.from_model_id( model_id="google-t5/t5-small", task="text2text-generation", # model_kwargs={"temperature": 0.2}, ) retriever_chain = get_context_retriever_chain(st.session_state.vector_store,llm) conversation_rag_chain = get_conversational_rag_chain(retriever_chain,llm) response = conversation_rag_chain.invoke({ "chat_history": st.session_state.chat_history, "input": user_query }) return response['answer'] # app config st.set_page_config(page_title= "Chat with Websites", page_icon="🤖") st.title("Chat with Websites") #sidebar with st.sidebar: st.header("Settings") website_url = st.text_input("Website URL") # openai_apikey = st.text_input("Enter your OpenAI API key") if (website_url is None or website_url == ""): st.info("Please ensure if website URL is entered") else: if "chat_history" not in st.session_state: st.session_state.chat_history = [ AIMessage(content = "Hello, I am a bot. How can I help you"), ] if "vector_store" not in st.session_state: st.session_state.vector_store = get_vector_store_from_url(website_url) #user_input user_query = st.chat_input("Type your message here...") if user_query is not None and user_query !="": response = get_response(user_query) st.session_state.chat_history.append(HumanMessage(content=user_query)) st.session_state.chat_history.append(AIMessage(content=response)) #conversation for message in st.session_state.chat_history: if isinstance(message, AIMessage): # checking if the messsage is the instance of an AI message with st.chat_message("AI"): st.write(message.content) elif isinstance(message, HumanMessage): # checking if the messsage is the instance of a Human with st.chat_message("Human"): st.write(message.content)