import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification import gradio as gr import torch feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") dataset = datasets.load_dataset("beans") extractor = AutoFeatureExtractor.from_pretrained("capofwesh20/bean_leaf_classifier") model = AutoModelForImageClassification.from_pretrained("capofwesh20/bean_leaf_classifier") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences sample_images=[['https://s3.amazonaws.com/moonup/production/uploads/1663933284359-611f9702593efbee33a4f7c9.png'], ['https://s3.amazonaws.com/moonup/production/uploads/1663933284374-611f9702593efbee33a4f7c9.png'], ['https://s3.amazonaws.com/moonup/production/uploads/1663933284412-611f9702593efbee33a4f7c9.png']] title = 'Bean Leaf Classifier' description = 'This model is trained for beans leaf classification but might give a false result on other leaves' interface = gr.Interface(fn = classify, inputs = gr.Image(shape=(200, 200)), outputs= 'label', title = title, description = description, examples=sample_images) interface.launch()