import base64 import concurrent.futures import os from io import BytesIO import cv2 import gradio as gr import numpy as np import requests import supervision as sv from inference_sdk import InferenceHTTPClient, InferenceConfiguration from openai import OpenAI CLIENT = InferenceHTTPClient( api_url="http://detect.roboflow.com", api_key=os.environ["ROBOFLOW_API_KEY"], ) custom_configuration = InferenceConfiguration(confidence_threshold=0.2) openai_client = OpenAI() def process_mask(region, task_id): region = cv2.rotate(region, cv2.ROTATE_90_COUNTERCLOCKWISE) # change channels region = cv2.cvtColor(region, cv2.COLOR_BGR2RGB) base64_image = base64.b64encode( BytesIO(cv2.imencode(".jpg", region)[1]).read() ).decode("utf-8") response = openai_client.chat.completions.create( model="gpt-4-vision-preview", messages=[ { "role": "user", "content": [ { "type": "text", "text": "Read the text on the book spine. Only say the book cover title and author if you can find them. Say the book that is most prominent. Return the format [title] [author], with no punctuation.", }, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, }, ], } ], max_tokens=300, ) print(response.choices[0].message.content.rstrip("Title:").replace("\n", " ")) return response.choices[0].message.content.rstrip("Title:").replace("\n", " ") def process_book_with_google_books(book): response = requests.get( f"https://www.googleapis.com/books/v1/volumes?q={book}", headers={"User-Agent": "Mozilla/5.0"}, ) response = response.json() isbn, author, link = "NULL", "NULL", "NULL" try: isbn = response["items"][0]["volumeInfo"]["industryIdentifiers"][0][ "identifier" ] if ( "volumeInfo" in response["items"][0] and "authors" in response["items"][0]["volumeInfo"] ): author = response["items"][0]["volumeInfo"]["authors"][0] link = response["items"][0]["volumeInfo"]["infoLink"] except: pass return isbn, author, link # define function that accepts an image def detect_books(image): # infer on a local image with CLIENT.use_configuration(custom_configuration): results = CLIENT.infer(image, model_id="open-shelves/8") results = sv.Detections.from_inference(results) mask_annotator = sv.MaskAnnotator() annotated_image = mask_annotator.annotate(scene=image, detections=results) masks_isolated = [] polygons = [sv.mask_to_polygons(mask) for mask in results.mask] for mask in results.mask: masked_region = np.zeros_like(image) masked_region[mask] = image[mask] masks_isolated.append(masked_region) print("Calculated masks...") with concurrent.futures.ThreadPoolExecutor() as executor: tasks = [ executor.submit(process_mask, region, task_id) for task_id, region in enumerate(masks_isolated) ] books = [task.result() for task in tasks] print("Processed books...") links = [] isbns = [] authors = [] with concurrent.futures.ThreadPoolExecutor() as executor: tasks = [ executor.submit(process_book_with_google_books, book) for book in books ] for task in tasks: isbn, author, link = task.result() isbns.append(isbn) authors.append(author) links.append(link) print("Processed books with Google Books...") annotations = [ { "title": title, "author": author, "isbn": isbn, "polygons": [polygon.tolist() for polygon in polygon_list], "xyxy": xyxy.tolist(), "link": link, } for title, author, isbn, polygon_list, xyxy, link in zip( books, authors, isbns, polygons, results.xyxy, links ) if "sorry" not in title.lower() and "NULL" not in title and "cannot" not in title and "can't" not in title ] # order annotations by x0 annotations = sorted(annotations, key=lambda x: x["xyxy"][0]) books = [annotation["title"] for annotation in annotations] isbns = [annotation["isbn"] for annotation in annotations] width, height = image.shape[1], image.shape[0] svg = f"""
""" for annotation in annotations: polygons = annotation["polygons"][0] svg += f"""""" svg += "" svg += """
""".replace( "HEIGHT", str(height) ).replace( "WIDTH", str(width) ) books = ", ".join(books) isbns = ", ".join(isbns) return books, annotated_image, isbns, svg iface = gr.Interface( fn=detect_books, description=""" Use Open Shelves to detect books in an image. The model will return the annotated image with the detected books, the titles of the books, and the ISBNs of the books. [View the project source code](https://github.com/capjamesg/open-shelves). [View the dataset on which the book segmentation model was trained](https://universe.roboflow.com/capjamesg/open-shelves).""", inputs=gr.components.Image(label="Input Image"), # outputs should be an image and a list of text outputs=[ gr.components.Textbox(label="Detected Books", info="The detected books."), gr.components.Image(label="Annotated Image"), gr.components.Textbox(label="ISBNs", info="The ISBNs of the detected books."), gr.components.Textbox(label="SVG", info="Copy-paste this code onto a web page to create a clickable bookshelf. NB: This code doesn't scale to different screen resolutions."), ], title="Open Shelves", allow_flagging=False, theme="huggingface", ) iface.launch()