diff --git "a/flagged/modeling_moss.py" "b/flagged/modeling_moss.py" new file mode 100644--- /dev/null +++ "b/flagged/modeling_moss.py" @@ -0,0 +1,2952 @@ +""" PyTorch Moss model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import transformers +from transformers.activations import ACT2FN +from transformers.modeling_utils import PreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from transformers.utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging +) + +from .configuration_moss import MossConfig + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "fnlp/moss-moon-003-base" +_CONFIG_FOR_DOC = "MossConfig" + + +MOSS_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "fnlp/moss-moon-003-base", + "fnlp/moss-moon-003-sft", + "fnlp/moss-moon-003-sft-plugin", + "fnlp/moss-moon-003-sft-int4", + "fnlp/moss-moon-003-sft-plugin-int4", + "fnlp/moss-moon-003-sft-int8", + "fnlp/moss-moon-003-sft-plugin-int8", +] + + +# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions +def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) + sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() + return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) + + +# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two +def rotate_every_two(x: torch.Tensor) -> torch.Tensor: + x1 = x[:, :, :, ::2] + x2 = x[:, :, :, 1::2] + x = torch.stack((-x2, x1), dim=-1) + return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') + + +# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb +def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: + sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) + cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) + return (tensor * cos) + (rotate_every_two(tensor) * sin) + + +class MossAttention(nn.Module): + def __init__(self, config): + super().__init__() + + max_positions = config.max_position_embeddings + self.register_buffer( + "causal_mask", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + ) + + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + + self.embed_dim = config.hidden_size + self.num_attention_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_attention_heads + if self.head_dim * self.num_attention_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" + f" `num_attention_heads`: {self.num_attention_heads})." + ) + self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) + self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) + + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) + self.rotary_dim = config.rotary_dim + pos_embd_dim = self.rotary_dim or self.embed_dim + self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) + + def _split_heads(self, x, n_head, dim_head, mp_num): + reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) + reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) + return reshaped + + def _merge_heads(self, tensor, num_attention_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into n_ctx + """ + if len(tensor.shape) == 5: + tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() + elif len(tensor.shape) == 4: + tensor = tensor.permute(0, 2, 1, 3).contiguous() + else: + raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") + new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) + return tensor.view(new_shape) + + def _attn( + self, + query, + key, + value, + attention_mask=None, + head_mask=None, + ): + # compute causal mask from causal mask buffer + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] + + # Keep the attention weights computation in fp32 to avoid overflow issues + query = query.to(torch.float32) + key = key.to(torch.float32) + + attn_weights = torch.matmul(query, key.transpose(-1, -2)) + + attn_weights = attn_weights / self.scale_attn + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.Softmax(dim=-1)(attn_weights) + attn_weights = attn_weights.to(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[ + Tuple[torch.Tensor, Tuple[torch.Tensor]], + Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], + ]: + qkv = self.qkv_proj(hidden_states) + # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic + mp_num = 4 + qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) + + local_dim = self.head_dim * self.num_attention_heads // mp_num + query, value, key = torch.split(qkv_split, local_dim, dim=-1) + query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) + key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) + + value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) + value = value.permute(0, 2, 1, 3) + + embed_positions = self.embed_positions + if embed_positions.device != position_ids.device: + embed_positions = embed_positions.to(position_ids.device) + self.embed_positions = embed_positions + + sincos = embed_positions[position_ids] + sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + + if self.rotary_dim is not None: + k_rot = key[:, :, :, : self.rotary_dim] + k_pass = key[:, :, :, self.rotary_dim :] + + q_rot = query[:, :, :, : self.rotary_dim] + q_pass = query[:, :, :, self.rotary_dim :] + + k_rot = apply_rotary_pos_emb(k_rot, sin, cos) + q_rot = apply_rotary_pos_emb(q_rot, sin, cos) + + key = torch.cat([k_rot, k_pass], dim=-1) + query = torch.cat([q_rot, q_pass], dim=-1) + else: + key = apply_rotary_pos_emb(key, sin, cos) + query = apply_rotary_pos_emb(query, sin, cos) + + key = key.permute(0, 2, 1, 3) + query = query.permute(0, 2, 1, 3) + + if layer_past is not None: + past_key = layer_past[0] + past_value = layer_past[1] + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + present = (key, value) + else: + present = None + + # compute self-attention: V x Softmax(QK^T) + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) + attn_output = self.out_proj(attn_output) + attn_output = self.resid_dropout(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs # a, present, (attentions) + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->Moss +class MossMLP(nn.Module): + def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim + super().__init__() + embed_dim = config.n_embd + + self.fc_in = nn.Linear(embed_dim, intermediate_size) + self.fc_out = nn.Linear(intermediate_size, embed_dim) + + self.act = ACT2FN[config.activation_function] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.fc_in(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.fc_out(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->Moss +class MossBlock(nn.Module): + def __init__(self, config): + super().__init__() + inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd + self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.attn = MossAttention(config) + self.mlp = MossMLP(inner_dim, config) + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_output + feed_forward_hidden_states + residual + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions) + + +class MossPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MossConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["MossBlock"] + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear,)): + # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, MossModel): + module.gradient_checkpointing = value + + +MOSS_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MossConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOSS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Moss Model transformer outputting raw hidden-states without any specific head on top.", + MOSS_START_DOCSTRING, +) +class MossModel(MossPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embed_dim = config.n_embd + self.vocab_size = config.vocab_size + self.wte = nn.Embedding(config.vocab_size, self.embed_dim) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)]) + self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if position_ids is not None: + position_ids = position_ids.view(-1, input_shape[-1]).long() + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) + + # Attention mask. + if attention_mask is not None: + if batch_size <= 0: + raise ValueError("batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x num_attention_heads x N x N + # head_mask has shape n_layer x batch x num_attention_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = input_shape + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " + "`use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, use_cache, output_attentions) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + None, + attention_mask, + position_ids, + head_mask[i], + ) + else: + outputs = block( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The Moss Model transformer with a language modeling head on top. + """, + MOSS_START_DOCSTRING, +) +class MossForCausalLM(MossPreTrainedModel): + _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"] + + def __init__(self, config): + super().__init__(config) + if not hasattr(config, 'wbits'): + config.wbits = 32 + config.groupsize = 128 + + if config.wbits not in [4, 8, 32]: + logger.warning(f'Specify `wbits` with 4, 8 or 32 to load the model. ') + if config.wbits in [4, 8]: + def noop(*args, **kwargs): + pass + torch.nn.init.kaiming_uniform_ = noop + torch.nn.init.uniform_ = noop + torch.nn.init.normal_ = noop + + torch.set_default_dtype(torch.half) + transformers.modeling_utils._init_weights = False + torch.set_default_dtype(torch.half) + self.transformer = MossModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size) + if config.wbits in [4, 8]: + torch.set_default_dtype(torch.float) + transformers.modeling_utils._init_weights = True + self.quantize(config.wbits, config.groupsize) + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + # make sure sampling in fp16 works correctly and + # compute loss in fp32 to match with mesh-tf version + # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 + lm_logits = self.lm_head(hidden_states).to(torch.float32) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + loss = loss.to(hidden_states.dtype) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + @staticmethod + def _reorder_cache( + past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor + ) -> Tuple[Tuple[torch.Tensor]]: + """ + This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or + [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past_key_values + ) + + def quantize(self, wbits, groupsize): + from .quantization import quantize_with_gptq + return quantize_with_gptq(self, wbits, groupsize) + +""" PyTorch Moss model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import transformers +from transformers.activations import ACT2FN +from transformers.modeling_utils import PreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from transformers.utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging +) + +from .configuration_moss import MossConfig + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "fnlp/moss-moon-003-base" +_CONFIG_FOR_DOC = "MossConfig" + + +MOSS_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "fnlp/moss-moon-003-base", + "fnlp/moss-moon-003-sft", + "fnlp/moss-moon-003-sft-plugin", + "fnlp/moss-moon-003-sft-int4", + "fnlp/moss-moon-003-sft-plugin-int4", + "fnlp/moss-moon-003-sft-int8", + "fnlp/moss-moon-003-sft-plugin-int8", +] + + +# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions +def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) + sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() + return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) + + +# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two +def rotate_every_two(x: torch.Tensor) -> torch.Tensor: + x1 = x[:, :, :, ::2] + x2 = x[:, :, :, 1::2] + x = torch.stack((-x2, x1), dim=-1) + return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') + + +# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb +def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: + sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) + cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) + return (tensor * cos) + (rotate_every_two(tensor) * sin) + + +class MossAttention(nn.Module): + def __init__(self, config): + super().__init__() + + max_positions = config.max_position_embeddings + self.register_buffer( + "causal_mask", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + ) + + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + + self.embed_dim = config.hidden_size + self.num_attention_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_attention_heads + if self.head_dim * self.num_attention_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" + f" `num_attention_heads`: {self.num_attention_heads})." + ) + self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) + self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) + + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) + self.rotary_dim = config.rotary_dim + pos_embd_dim = self.rotary_dim or self.embed_dim + self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) + + def _split_heads(self, x, n_head, dim_head, mp_num): + reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) + reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) + return reshaped + + def _merge_heads(self, tensor, num_attention_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into n_ctx + """ + if len(tensor.shape) == 5: + tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() + elif len(tensor.shape) == 4: + tensor = tensor.permute(0, 2, 1, 3).contiguous() + else: + raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") + new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) + return tensor.view(new_shape) + + def _attn( + self, + query, + key, + value, + attention_mask=None, + head_mask=None, + ): + # compute causal mask from causal mask buffer + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] + + # Keep the attention weights computation in fp32 to avoid overflow issues + query = query.to(torch.float32) + key = key.to(torch.float32) + + attn_weights = torch.matmul(query, key.transpose(-1, -2)) + + attn_weights = attn_weights / self.scale_attn + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.Softmax(dim=-1)(attn_weights) + attn_weights = attn_weights.to(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[ + Tuple[torch.Tensor, Tuple[torch.Tensor]], + Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], + ]: + qkv = self.qkv_proj(hidden_states) + # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic + mp_num = 4 + qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) + + local_dim = self.head_dim * self.num_attention_heads // mp_num + query, value, key = torch.split(qkv_split, local_dim, dim=-1) + query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) + key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) + + value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) + value = value.permute(0, 2, 1, 3) + + embed_positions = self.embed_positions + if embed_positions.device != position_ids.device: + embed_positions = embed_positions.to(position_ids.device) + self.embed_positions = embed_positions + + sincos = embed_positions[position_ids] + sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + + if self.rotary_dim is not None: + k_rot = key[:, :, :, : self.rotary_dim] + k_pass = key[:, :, :, self.rotary_dim :] + + q_rot = query[:, :, :, : self.rotary_dim] + q_pass = query[:, :, :, self.rotary_dim :] + + k_rot = apply_rotary_pos_emb(k_rot, sin, cos) + q_rot = apply_rotary_pos_emb(q_rot, sin, cos) + + key = torch.cat([k_rot, k_pass], dim=-1) + query = torch.cat([q_rot, q_pass], dim=-1) + else: + key = apply_rotary_pos_emb(key, sin, cos) + query = apply_rotary_pos_emb(query, sin, cos) + + key = key.permute(0, 2, 1, 3) + query = query.permute(0, 2, 1, 3) + + if layer_past is not None: + past_key = layer_past[0] + past_value = layer_past[1] + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + present = (key, value) + else: + present = None + + # compute self-attention: V x Softmax(QK^T) + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) + attn_output = self.out_proj(attn_output) + attn_output = self.resid_dropout(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs # a, present, (attentions) + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->Moss +class MossMLP(nn.Module): + def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim + super().__init__() + embed_dim = config.n_embd + + self.fc_in = nn.Linear(embed_dim, intermediate_size) + self.fc_out = nn.Linear(intermediate_size, embed_dim) + + self.act = ACT2FN[config.activation_function] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.fc_in(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.fc_out(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->Moss +class MossBlock(nn.Module): + def __init__(self, config): + super().__init__() + inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd + self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.attn = MossAttention(config) + self.mlp = MossMLP(inner_dim, config) + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_output + feed_forward_hidden_states + residual + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions) + + +class MossPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MossConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["MossBlock"] + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear,)): + # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, MossModel): + module.gradient_checkpointing = value + + +MOSS_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MossConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOSS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Moss Model transformer outputting raw hidden-states without any specific head on top.", + MOSS_START_DOCSTRING, +) +class MossModel(MossPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embed_dim = config.n_embd + self.vocab_size = config.vocab_size + self.wte = nn.Embedding(config.vocab_size, self.embed_dim) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)]) + self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if position_ids is not None: + position_ids = position_ids.view(-1, input_shape[-1]).long() + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) + + # Attention mask. + if attention_mask is not None: + if batch_size <= 0: + raise ValueError("batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x num_attention_heads x N x N + # head_mask has shape n_layer x batch x num_attention_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = input_shape + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " + "`use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, use_cache, output_attentions) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + None, + attention_mask, + position_ids, + head_mask[i], + ) + else: + outputs = block( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The Moss Model transformer with a language modeling head on top. + """, + MOSS_START_DOCSTRING, +) +class MossForCausalLM(MossPreTrainedModel): + _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"] + + def __init__(self, config): + super().__init__(config) + if not hasattr(config, 'wbits'): + config.wbits = 32 + config.groupsize = 128 + + if config.wbits not in [4, 8, 32]: + logger.warning(f'Specify `wbits` with 4, 8 or 32 to load the model. ') + if config.wbits in [4, 8]: + def noop(*args, **kwargs): + pass + torch.nn.init.kaiming_uniform_ = noop + torch.nn.init.uniform_ = noop + torch.nn.init.normal_ = noop + + torch.set_default_dtype(torch.half) + transformers.modeling_utils._init_weights = False + torch.set_default_dtype(torch.half) + self.transformer = MossModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size) + if config.wbits in [4, 8]: + torch.set_default_dtype(torch.float) + transformers.modeling_utils._init_weights = True + self.quantize(config.wbits, config.groupsize) + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + # make sure sampling in fp16 works correctly and + # compute loss in fp32 to match with mesh-tf version + # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 + lm_logits = self.lm_head(hidden_states).to(torch.float32) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + loss = loss.to(hidden_states.dtype) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + @staticmethod + def _reorder_cache( + past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor + ) -> Tuple[Tuple[torch.Tensor]]: + """ + This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or + [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past_key_values + ) + + def quantize(self, wbits, groupsize): + from .quantization import quantize_with_gptq + return quantize_with_gptq(self, wbits, groupsize) + +""" PyTorch Moss model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import transformers +from transformers.activations import ACT2FN +from transformers.modeling_utils import PreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from transformers.utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging +) + +from .configuration_moss import MossConfig + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "fnlp/moss-moon-003-base" +_CONFIG_FOR_DOC = "MossConfig" + + +MOSS_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "fnlp/moss-moon-003-base", + "fnlp/moss-moon-003-sft", + "fnlp/moss-moon-003-sft-plugin", + "fnlp/moss-moon-003-sft-int4", + "fnlp/moss-moon-003-sft-plugin-int4", + "fnlp/moss-moon-003-sft-int8", + "fnlp/moss-moon-003-sft-plugin-int8", +] + + +# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions +def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) + sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() + return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) + + +# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two +def rotate_every_two(x: torch.Tensor) -> torch.Tensor: + x1 = x[:, :, :, ::2] + x2 = x[:, :, :, 1::2] + x = torch.stack((-x2, x1), dim=-1) + return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') + + +# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb +def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: + sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) + cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) + return (tensor * cos) + (rotate_every_two(tensor) * sin) + + +class MossAttention(nn.Module): + def __init__(self, config): + super().__init__() + + max_positions = config.max_position_embeddings + self.register_buffer( + "causal_mask", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + ) + + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + + self.embed_dim = config.hidden_size + self.num_attention_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_attention_heads + if self.head_dim * self.num_attention_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" + f" `num_attention_heads`: {self.num_attention_heads})." + ) + self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) + self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) + + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) + self.rotary_dim = config.rotary_dim + pos_embd_dim = self.rotary_dim or self.embed_dim + self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) + + def _split_heads(self, x, n_head, dim_head, mp_num): + reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) + reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) + return reshaped + + def _merge_heads(self, tensor, num_attention_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into n_ctx + """ + if len(tensor.shape) == 5: + tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() + elif len(tensor.shape) == 4: + tensor = tensor.permute(0, 2, 1, 3).contiguous() + else: + raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") + new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) + return tensor.view(new_shape) + + def _attn( + self, + query, + key, + value, + attention_mask=None, + head_mask=None, + ): + # compute causal mask from causal mask buffer + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] + + # Keep the attention weights computation in fp32 to avoid overflow issues + query = query.to(torch.float32) + key = key.to(torch.float32) + + attn_weights = torch.matmul(query, key.transpose(-1, -2)) + + attn_weights = attn_weights / self.scale_attn + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.Softmax(dim=-1)(attn_weights) + attn_weights = attn_weights.to(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[ + Tuple[torch.Tensor, Tuple[torch.Tensor]], + Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], + ]: + qkv = self.qkv_proj(hidden_states) + # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic + mp_num = 4 + qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) + + local_dim = self.head_dim * self.num_attention_heads // mp_num + query, value, key = torch.split(qkv_split, local_dim, dim=-1) + query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) + key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) + + value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) + value = value.permute(0, 2, 1, 3) + + embed_positions = self.embed_positions + if embed_positions.device != position_ids.device: + embed_positions = embed_positions.to(position_ids.device) + self.embed_positions = embed_positions + + sincos = embed_positions[position_ids] + sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + + if self.rotary_dim is not None: + k_rot = key[:, :, :, : self.rotary_dim] + k_pass = key[:, :, :, self.rotary_dim :] + + q_rot = query[:, :, :, : self.rotary_dim] + q_pass = query[:, :, :, self.rotary_dim :] + + k_rot = apply_rotary_pos_emb(k_rot, sin, cos) + q_rot = apply_rotary_pos_emb(q_rot, sin, cos) + + key = torch.cat([k_rot, k_pass], dim=-1) + query = torch.cat([q_rot, q_pass], dim=-1) + else: + key = apply_rotary_pos_emb(key, sin, cos) + query = apply_rotary_pos_emb(query, sin, cos) + + key = key.permute(0, 2, 1, 3) + query = query.permute(0, 2, 1, 3) + + if layer_past is not None: + past_key = layer_past[0] + past_value = layer_past[1] + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + present = (key, value) + else: + present = None + + # compute self-attention: V x Softmax(QK^T) + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) + attn_output = self.out_proj(attn_output) + attn_output = self.resid_dropout(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs # a, present, (attentions) + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->Moss +class MossMLP(nn.Module): + def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim + super().__init__() + embed_dim = config.n_embd + + self.fc_in = nn.Linear(embed_dim, intermediate_size) + self.fc_out = nn.Linear(intermediate_size, embed_dim) + + self.act = ACT2FN[config.activation_function] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.fc_in(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.fc_out(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->Moss +class MossBlock(nn.Module): + def __init__(self, config): + super().__init__() + inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd + self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.attn = MossAttention(config) + self.mlp = MossMLP(inner_dim, config) + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_output + feed_forward_hidden_states + residual + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions) + + +class MossPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MossConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["MossBlock"] + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear,)): + # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, MossModel): + module.gradient_checkpointing = value + + +MOSS_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MossConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOSS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Moss Model transformer outputting raw hidden-states without any specific head on top.", + MOSS_START_DOCSTRING, +) +class MossModel(MossPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embed_dim = config.n_embd + self.vocab_size = config.vocab_size + self.wte = nn.Embedding(config.vocab_size, self.embed_dim) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)]) + self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if position_ids is not None: + position_ids = position_ids.view(-1, input_shape[-1]).long() + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) + + # Attention mask. + if attention_mask is not None: + if batch_size <= 0: + raise ValueError("batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x num_attention_heads x N x N + # head_mask has shape n_layer x batch x num_attention_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = input_shape + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " + "`use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, use_cache, output_attentions) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + None, + attention_mask, + position_ids, + head_mask[i], + ) + else: + outputs = block( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The Moss Model transformer with a language modeling head on top. + """, + MOSS_START_DOCSTRING, +) +class MossForCausalLM(MossPreTrainedModel): + _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"] + + def __init__(self, config): + super().__init__(config) + if not hasattr(config, 'wbits'): + config.wbits = 32 + config.groupsize = 128 + + if config.wbits not in [4, 8, 32]: + logger.warning(f'Specify `wbits` with 4, 8 or 32 to load the model. ') + if config.wbits in [4, 8]: + def noop(*args, **kwargs): + pass + torch.nn.init.kaiming_uniform_ = noop + torch.nn.init.uniform_ = noop + torch.nn.init.normal_ = noop + + torch.set_default_dtype(torch.half) + transformers.modeling_utils._init_weights = False + torch.set_default_dtype(torch.half) + self.transformer = MossModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size) + if config.wbits in [4, 8]: + torch.set_default_dtype(torch.float) + transformers.modeling_utils._init_weights = True + self.quantize(config.wbits, config.groupsize) + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + # make sure sampling in fp16 works correctly and + # compute loss in fp32 to match with mesh-tf version + # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 + lm_logits = self.lm_head(hidden_states).to(torch.float32) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + loss = loss.to(hidden_states.dtype) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + @staticmethod + def _reorder_cache( + past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor + ) -> Tuple[Tuple[torch.Tensor]]: + """ + This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or + [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past_key_values + ) + + def quantize(self, wbits, groupsize): + from .quantization import quantize_with_gptq + return quantize_with_gptq(self, wbits, groupsize) + +""" PyTorch Moss model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss +import transformers +from transformers.activations import ACT2FN +from transformers.modeling_utils import PreTrainedModel +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from transformers.utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging +) + +from .configuration_moss import MossConfig + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "fnlp/moss-moon-003-base" +_CONFIG_FOR_DOC = "MossConfig" + + +MOSS_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "fnlp/moss-moon-003-base", + "fnlp/moss-moon-003-sft", + "fnlp/moss-moon-003-sft-plugin", + "fnlp/moss-moon-003-sft-int4", + "fnlp/moss-moon-003-sft-plugin-int4", + "fnlp/moss-moon-003-sft-int8", + "fnlp/moss-moon-003-sft-plugin-int8", +] + + +# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions +def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim)) + sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float() + return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) + + +# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two +def rotate_every_two(x: torch.Tensor) -> torch.Tensor: + x1 = x[:, :, :, ::2] + x2 = x[:, :, :, 1::2] + x = torch.stack((-x2, x1), dim=-1) + return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') + + +# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb +def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: + sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) + cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) + return (tensor * cos) + (rotate_every_two(tensor) * sin) + + +class MossAttention(nn.Module): + def __init__(self, config): + super().__init__() + + max_positions = config.max_position_embeddings + self.register_buffer( + "causal_mask", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + ) + + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + + self.embed_dim = config.hidden_size + self.num_attention_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_attention_heads + if self.head_dim * self.num_attention_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" + f" `num_attention_heads`: {self.num_attention_heads})." + ) + self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) + self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) + + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) + self.rotary_dim = config.rotary_dim + pos_embd_dim = self.rotary_dim or self.embed_dim + self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) + + def _split_heads(self, x, n_head, dim_head, mp_num): + reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) + reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) + return reshaped + + def _merge_heads(self, tensor, num_attention_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into n_ctx + """ + if len(tensor.shape) == 5: + tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() + elif len(tensor.shape) == 4: + tensor = tensor.permute(0, 2, 1, 3).contiguous() + else: + raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") + new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) + return tensor.view(new_shape) + + def _attn( + self, + query, + key, + value, + attention_mask=None, + head_mask=None, + ): + # compute causal mask from causal mask buffer + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] + + # Keep the attention weights computation in fp32 to avoid overflow issues + query = query.to(torch.float32) + key = key.to(torch.float32) + + attn_weights = torch.matmul(query, key.transpose(-1, -2)) + + attn_weights = attn_weights / self.scale_attn + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.Softmax(dim=-1)(attn_weights) + attn_weights = attn_weights.to(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[ + Tuple[torch.Tensor, Tuple[torch.Tensor]], + Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], + ]: + qkv = self.qkv_proj(hidden_states) + # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic + mp_num = 4 + qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) + + local_dim = self.head_dim * self.num_attention_heads // mp_num + query, value, key = torch.split(qkv_split, local_dim, dim=-1) + query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) + key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) + + value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) + value = value.permute(0, 2, 1, 3) + + embed_positions = self.embed_positions + if embed_positions.device != position_ids.device: + embed_positions = embed_positions.to(position_ids.device) + self.embed_positions = embed_positions + + sincos = embed_positions[position_ids] + sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + + if self.rotary_dim is not None: + k_rot = key[:, :, :, : self.rotary_dim] + k_pass = key[:, :, :, self.rotary_dim :] + + q_rot = query[:, :, :, : self.rotary_dim] + q_pass = query[:, :, :, self.rotary_dim :] + + k_rot = apply_rotary_pos_emb(k_rot, sin, cos) + q_rot = apply_rotary_pos_emb(q_rot, sin, cos) + + key = torch.cat([k_rot, k_pass], dim=-1) + query = torch.cat([q_rot, q_pass], dim=-1) + else: + key = apply_rotary_pos_emb(key, sin, cos) + query = apply_rotary_pos_emb(query, sin, cos) + + key = key.permute(0, 2, 1, 3) + query = query.permute(0, 2, 1, 3) + + if layer_past is not None: + past_key = layer_past[0] + past_value = layer_past[1] + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + present = (key, value) + else: + present = None + + # compute self-attention: V x Softmax(QK^T) + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) + attn_output = self.out_proj(attn_output) + attn_output = self.resid_dropout(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs # a, present, (attentions) + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->Moss +class MossMLP(nn.Module): + def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim + super().__init__() + embed_dim = config.n_embd + + self.fc_in = nn.Linear(embed_dim, intermediate_size) + self.fc_out = nn.Linear(intermediate_size, embed_dim) + + self.act = ACT2FN[config.activation_function] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.fc_in(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.fc_out(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->Moss +class MossBlock(nn.Module): + def __init__(self, config): + super().__init__() + inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd + self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.attn = MossAttention(config) + self.mlp = MossMLP(inner_dim, config) + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_output + feed_forward_hidden_states + residual + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions) + + +class MossPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MossConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["MossBlock"] + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear,)): + # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, MossModel): + module.gradient_checkpointing = value + + +MOSS_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`MossConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOSS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Moss Model transformer outputting raw hidden-states without any specific head on top.", + MOSS_START_DOCSTRING, +) +class MossModel(MossPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embed_dim = config.n_embd + self.vocab_size = config.vocab_size + self.wte = nn.Embedding(config.vocab_size, self.embed_dim) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)]) + self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if position_ids is not None: + position_ids = position_ids.view(-1, input_shape[-1]).long() + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) + + # Attention mask. + if attention_mask is not None: + if batch_size <= 0: + raise ValueError("batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x num_attention_heads x N x N + # head_mask has shape n_layer x batch x num_attention_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = input_shape + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " + "`use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + + def create_custom_forward(module): + def custom_forward(*inputs): + # None for past_key_value + return module(*inputs, use_cache, output_attentions) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + None, + attention_mask, + position_ids, + head_mask[i], + ) + else: + outputs = block( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The Moss Model transformer with a language modeling head on top. + """, + MOSS_START_DOCSTRING, +) +class MossForCausalLM(MossPreTrainedModel): + _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.causal_mask"] + + def __init__(self, config): + super().__init__(config) + if not hasattr(config, 'wbits'): + config.wbits = 32 + config.groupsize = 128 + + if config.wbits not in [4, 8, 32]: + logger.warning(f'Specify `wbits` with 4, 8 or 32 to load the model. ') + if config.wbits in [4, 8]: + def noop(*args, **kwargs): + pass + torch.nn.init.kaiming_uniform_ = noop + torch.nn.init.uniform_ = noop + torch.nn.init.normal_ = noop + + torch.set_default_dtype(torch.half) + transformers.modeling_utils._init_weights = False + torch.set_default_dtype(torch.half) + self.transformer = MossModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size) + if config.wbits in [4, 8]: + torch.set_default_dtype(torch.float) + transformers.modeling_utils._init_weights = True + self.quantize(config.wbits, config.groupsize) + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + input_ids = input_ids[:, -1].unsqueeze(-1) + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -1].unsqueeze(-1) + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -1].unsqueeze(-1) + + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + @add_start_docstrings_to_model_forward(MOSS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + # make sure sampling in fp16 works correctly and + # compute loss in fp32 to match with mesh-tf version + # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 + lm_logits = self.lm_head(hidden_states).to(torch.float32) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + loss = loss.to(hidden_states.dtype) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + @staticmethod + def _reorder_cache( + past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor + ) -> Tuple[Tuple[torch.Tensor]]: + """ + This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or + [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past_key_values + ) + + def quantize(self, wbits, groupsize): + from .quantization import quantize_with_gptq + return quantize_with_gptq(self, wbits, groupsize) +