from functools import lru_cache from typing import Tuple import numpy from facefusion import inference_manager from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url from facefusion.face_helper import warp_face_by_face_landmark_5 from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import DownloadScope, Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame @lru_cache(maxsize = None) def create_static_model_set(download_scope : DownloadScope) -> ModelSet: return\ { 'arcface': { 'hashes': { 'face_recognizer': { 'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.hash'), 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash') } }, 'sources': { 'face_recognizer': { 'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.onnx'), 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') } }, 'template': 'arcface_112_v2', 'size': (112, 112) } } def get_inference_pool() -> InferencePool: model_sources = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def get_model_options() -> ModelOptions: return create_static_model_set('full').get('arcface') def pre_check() -> bool: model_hashes = get_model_options().get('hashes') model_sources = get_model_options().get('sources') return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources) def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]: model_template = get_model_options().get('template') model_size = get_model_options().get('size') crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size) crop_vision_frame = crop_vision_frame / 127.5 - 1 crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) embedding = forward(crop_vision_frame) embedding = embedding.ravel() normed_embedding = embedding / numpy.linalg.norm(embedding) return embedding, normed_embedding def forward(crop_vision_frame : VisionFrame) -> Embedding: face_recognizer = get_inference_pool().get('face_recognizer') with conditional_thread_semaphore(): embedding = face_recognizer.run(None, { 'input': crop_vision_frame })[0] return embedding