Spaces:
Runtime error
Runtime error
import os, shutil, json, requests, random, time, runpod | |
from urllib.parse import urlsplit | |
import torch | |
from PIL import Image | |
import numpy as np | |
from nodes import NODE_CLASS_MAPPINGS, load_custom_node | |
from comfy_extras import nodes_flux, nodes_differential_diffusion, nodes_model_advanced, nodes_custom_sampler | |
load_custom_node("/content/ComfyUI/custom_nodes/comfyui-art-venture") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI_LayerStyle") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI_essentials") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-Advanced-ControlNet") | |
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI_SLK_joy_caption_two") | |
CheckpointLoaderSimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]() | |
LoraLoader = NODE_CLASS_MAPPINGS["LoraLoader"]() | |
ACN_ControlNet = NODE_CLASS_MAPPINGS["ACN_ControlNet++LoaderSingle"]() | |
LoadBiRefNetModel = NODE_CLASS_MAPPINGS["LayerMask: LoadBiRefNetModel"]() | |
LoadImage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
ImageBatch = NODE_CLASS_MAPPINGS["ImageBatch"]() | |
AV_IPAdapter = NODE_CLASS_MAPPINGS["AV_IPAdapter"]() | |
ImageScaleToMegapixels = NODE_CLASS_MAPPINGS["ImageScaleToMegapixels"]() | |
BiRefNetUltraV2 = NODE_CLASS_MAPPINGS["LayerMask: BiRefNetUltraV2"]() | |
ImageRemoveAlpha = NODE_CLASS_MAPPINGS["LayerUtility: ImageRemoveAlpha"]() | |
ImageDesaturate = NODE_CLASS_MAPPINGS["ImageDesaturate+"]() | |
AV_ControlNetPreprocessor = NODE_CLASS_MAPPINGS["AV_ControlNetPreprocessor"]() | |
ControlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]() | |
CLIPTextEncode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
Joy_caption_two_load = NODE_CLASS_MAPPINGS["Joy_caption_two_load"]() | |
Joy_caption_two = NODE_CLASS_MAPPINGS["Joy_caption_two"]() | |
EmptyLatentImage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
GetImageSize = NODE_CLASS_MAPPINGS["GetImageSize+"]() | |
KSampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
VAEDecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
with torch.inference_mode(): | |
unet, clip, vae = CheckpointLoaderSimple.load_checkpoint("sdxl/leosamsHelloworldXL_helloworldXL70.safetensors") | |
lora_unet, lora_clip = LoraLoader.load_lora(unet, clip, "sdxl/araminta_k_midsommar_cartoon.safetensors", 0.80, 1.0) | |
control_net = ACN_ControlNet.load_controlnet_plusplus("sdxl/controlnet-union-sdxl-1.0-promax.safetensors", "canny/lineart/mlsd")[0] | |
birefnet_model = LoadBiRefNetModel.load_birefnet_model("BiRefNet-general-epoch_244.pth")[0] | |
joy_two_pipeline = Joy_caption_two_load.generate("Llama-3.1-8B-Lexi-Uncensored-V2")[0] | |
def download_file(url, save_dir, file_name): | |
os.makedirs(save_dir, exist_ok=True) | |
file_suffix = os.path.splitext(urlsplit(url).path)[1] | |
file_name_with_suffix = file_name + file_suffix | |
file_path = os.path.join(save_dir, file_name_with_suffix) | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(file_path, 'wb') as file: | |
file.write(response.content) | |
return file_path | |
def generate(input): | |
values = input["input"] | |
input_image = values['input_image'] | |
input_image = download_file(url=input_image, save_dir='/content/ComfyUI/input', file_name='input_image') | |
style_image1 = values['style_image1'] | |
style_image1 = download_file(url=style_image1, save_dir='/content/ComfyUI/input', file_name='style_image1') | |
style_image2 = values['style_image2'] | |
style_image2 = download_file(url=style_image2, save_dir='/content/ComfyUI/input', file_name='style_image2') | |
style_image3 = values['style_image3'] | |
style_image3 = download_file(url=style_image3, save_dir='/content/ComfyUI/input', file_name='style_image3') | |
style_image4 = values['style_image4'] | |
style_image4 = download_file(url=style_image4, save_dir='/content/ComfyUI/input', file_name='style_image4') | |
negative_prompt = values['negative_prompt'] | |
seed = values['seed'] | |
steps = values['steps'] | |
cfg = values['cfg'] | |
sampler_name = values['sampler_name'] | |
scheduler = values['scheduler'] | |
width = values['width'] | |
height = values['height'] | |
enable_image_caption = values['enable_image_caption'] | |
if seed == 0: | |
random.seed(int(time.time())) | |
seed = random.randint(0, 18446744073709551615) | |
input_image = LoadImage.load_image(input_image)[0] | |
input_image = ImageScaleToMegapixels.image_scale_down_to_total_pixels(input_image, megapixels=1.0)[0] | |
input_image, input_mask = BiRefNetUltraV2.birefnet_ultra_v2(input_image, birefnet_model, detail_method="VITMatte", detail_erode=4, detail_dilate=2, black_point=0.01, white_point=0.99, process_detail=False, device="cuda", max_megapixels=2.0) | |
input_image = ImageRemoveAlpha.image_remove_alpha(input_image, fill_background=True, background_color="#FFFFFF", mask=input_mask)[0] | |
input_image = ImageDesaturate.execute(input_image, factor=1.0, method="luminance (Rec.601)")[0] | |
if enable_image_caption: | |
caption_type = values['caption_type'] | |
caption_length = values['caption_length'] | |
low_vram = values['low_vram'] | |
positive_prompt = Joy_caption_two.generate(joy_two_pipeline, input_image, caption_type, caption_length, low_vram)[0] | |
else: | |
positive_prompt = values['positive_prompt'] | |
style_image1 = LoadImage.load_image(style_image1)[0] | |
style_image2 = LoadImage.load_image(style_image2)[0] | |
style_image3 = LoadImage.load_image(style_image3)[0] | |
style_image4 = LoadImage.load_image(style_image4)[0] | |
batch_image1 = ImageBatch.batch(style_image1, style_image2)[0] | |
batch_image2 = ImageBatch.batch(style_image3, style_image4)[0] | |
batch_image3 = ImageBatch.batch(batch_image1, batch_image2)[0] | |
ip_unet = AV_IPAdapter.apply_ip_adapter("ip-adapter_sdxl_vit-h.safetensors", "CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors", lora_unet, batch_image3, weight=1.5, weight_type="style transfer", start_at=0, end_at=1)[0] | |
canny_image = AV_ControlNetPreprocessor.detect_controlnet(input_image, preprocessor="canny", sd_version="sdxl", resolution=640, preprocessor_override="None")[0] | |
positive = CLIPTextEncode.encode(clip, positive_prompt)[0] | |
negative = CLIPTextEncode.encode(clip, negative_prompt)[0] | |
positive, negative = ControlNetApplyAdvanced.apply_controlnet(positive, negative, control_net, canny_image, strength=0.65, start_percent=0.0, end_percent=0.91, vae=vae) | |
latent_image = EmptyLatentImage.generate(width, height, batch_size=1)[0] | |
samples = KSampler.sample(ip_unet, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0)[0] | |
decoded = VAEDecode.decode(vae, samples)[0].detach() | |
Image.fromarray(np.array(decoded*255, dtype=np.uint8)[0]).save(f"/content/sdxl-line-art-style-transfer-{seed}-tost.png") | |
result = f"/content/sdxl-line-art-style-transfer-{seed}-tost.png" | |
try: | |
notify_uri = values['notify_uri'] | |
del values['notify_uri'] | |
notify_token = values['notify_token'] | |
del values['notify_token'] | |
discord_id = values['discord_id'] | |
del values['discord_id'] | |
if(discord_id == "discord_id"): | |
discord_id = os.getenv('com_camenduru_discord_id') | |
discord_channel = values['discord_channel'] | |
del values['discord_channel'] | |
if(discord_channel == "discord_channel"): | |
discord_channel = os.getenv('com_camenduru_discord_channel') | |
discord_token = values['discord_token'] | |
del values['discord_token'] | |
if(discord_token == "discord_token"): | |
discord_token = os.getenv('com_camenduru_discord_token') | |
job_id = values['job_id'] | |
del values['job_id'] | |
default_filename = os.path.basename(result) | |
with open(result, "rb") as file: | |
files = {default_filename: file.read()} | |
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} | |
response = requests.post( | |
f"https://discord.com/api/v9/channels/{discord_channel}/messages", | |
data=payload, | |
headers={"Authorization": f"Bot {discord_token}"}, | |
files=files | |
) | |
response.raise_for_status() | |
result_url = response.json()['attachments'][0]['url'] | |
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"} | |
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') | |
web_notify_token = os.getenv('com_camenduru_web_notify_token') | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
return {"jobId": job_id, "result": result_url, "status": "DONE"} | |
except Exception as e: | |
error_payload = {"jobId": job_id, "status": "FAILED"} | |
try: | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
except: | |
pass | |
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} | |
finally: | |
if os.path.exists(result): | |
os.remove(result) | |
runpod.serverless.start({"handler": generate}) |