File size: 11,401 Bytes
7a4b92f
 
 
 
 
 
 
5ab0373
7a4b92f
 
 
 
 
5ab0373
 
 
 
7a4b92f
 
 
5ab0373
7a4b92f
 
 
 
 
e8f4d7e
 
 
 
 
 
7a4b92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab0373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482ba4
7a4b92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab0373
7a4b92f
 
 
 
 
 
 
c9d11b2
7a4b92f
 
 
 
 
 
 
 
 
 
5ab0373
7a4b92f
c9d11b2
7a4b92f
5ab0373
7a4b92f
 
 
 
5ab0373
 
 
7a4b92f
 
 
5ab0373
 
 
 
 
 
c9d11b2
5ab0373
 
 
 
 
 
 
 
 
 
 
 
c9d11b2
5ab0373
 
 
 
 
 
7a4b92f
 
 
 
 
 
 
 
 
 
 
 
 
 
2482ba4
 
7a4b92f
 
 
 
 
 
 
 
2482ba4
7a4b92f
c9d11b2
7a4b92f
 
 
 
 
 
 
 
 
 
e8f4d7e
7a4b92f
 
c9d11b2
7a4b92f
 
 
 
 
 
 
 
5ab0373
7a4b92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ab0373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import project_path

import torch
from tqdm import tqdm
from functools import partial
import numpy as np
import json
import time
from unittest.mock import patch

# assumes yolov5 on sys.path
from lib.yolov5.models.experimental import attempt_load
from lib.yolov5.utils.torch_utils import select_device
from lib.yolov5.utils.general import clip_boxes, scale_boxes, xywh2xyxy
from lib.yolov5.utils.metrics import box_iou
import torch
import torchvision

from lib.fish_eye.tracker import Tracker


### Configuration options
WEIGHTS = 'models/v5m_896_300best.pt'
# will need to configure these based on GPU hardware
BATCH_SIZE = 32

CONF_THRES = 0.3 # detection
NMS_IOU  = 0.3 # NMS IOU
MIN_LENGTH = 0.3 # minimum fish length, in meters
MAX_AGE = 20 # time until missing fish get's new id
IOU_THRES = 0.01 # IOU threshold for tracking
MIN_HITS = 11 # minimum number of frames with a specific fish for it to count
###

def norm(bbox, w, h):
    """
    Normalize a bounding box.
    Args:
        bbox: list of length 4. Can be [x,y,w,h] or [x0,y0,x1,y1]
        w: image width
        h: image height
    """
    bb = bbox.copy()
    bb[0] /= w
    bb[1] /= h
    bb[2] /= w
    bb[3] /= h
    return bb

def do_full_inference(dataloader, image_meter_width, image_meter_height, gp=None, weights=WEIGHTS):
    
    model, device = setup_model(weights)

    load = False
    save = False

    if load:
        with open('static/example/inference_output.json', 'r') as f:
            json_object = json.load(f)
            inference = json_object['inference']
            width = json_object['width']
            height = json_object['height']
    else:
        inference, width, height = do_detection(dataloader, model, device, gp=gp)

    if save:
        json_object = {
            'inference': inference,
            'width': width,
            'height': height
        }
        json_text = json.dumps(json_object, indent=4)
        with open('static/example/inference_output.json', 'w') as f:
            f.write(json_text)
        return


    all_preds, real_width, real_height = do_suppression(dataloader, inference, width, height, gp=gp)

    results = do_tracking(all_preds, image_meter_width, image_meter_height, gp=gp)

    return results
    

def setup_model(weights_fp=WEIGHTS, imgsz=896, batch_size=32):
    if torch.cuda.is_available():
        device = select_device('0', batch_size=batch_size)
    else:
        print("CUDA not available. Using CPU inference.")
        device = select_device('cpu', batch_size=batch_size)
    
    # Setup model for inference
    model = attempt_load(weights_fp, device=device)
    half = device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()
    model.eval()
    
    # Create dataloader for batched inference
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    
    return model, device
                       
def do_detection(dataloader, model, device, gp=None, batch_size=BATCH_SIZE, verbose=True):
    """
    Args:
        frames_dir: a directory containing frames to be evaluated
        image_meter_width: the width of each image, in meters (used for fish length calculation)
        gp: a callback function which takes as input 1 parameter, (int) percent complete
        prep_for_marking: re-index fish for manual marking output
    """

    if (gp): gp(0, "Detection...")

    inference = []
    # Run detection
    with tqdm(total=len(dataloader)*batch_size, desc="Running detection", ncols=0, disable=not verbose) as pbar:
        for batch_i, (img, _, shapes) in enumerate(dataloader):

            if gp: gp(batch_i / len(dataloader), pbar.__str__())
            img = img.to(device, non_blocking=True)
            img = img.half() if device.type != 'cpu' else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            size = tuple(img.shape)
            nb, _, height, width = size  # batch size, channels, height, width

            # Run model & NMS
            with torch.no_grad():
                inf_out, _ = model(img, augment=False) 

            inference.append(inf_out)
            pbar.update(1*batch_size)

    return inference, width, height

def do_suppression(dataloader, inference, width, height, gp=None, batch_size=BATCH_SIZE, conf_thres=CONF_THRES, iou_thres=NMS_IOU, verbose=True):
    """
    Args:
        frames_dir: a directory containing frames to be evaluated
        image_meter_width: the width of each image, in meters (used for fish length calculation)
        gp: a callback function which takes as input 1 parameter, (int) percent complete
        prep_for_marking: re-index fish for manual marking output
    """
    
    if (gp): gp(0, "Suppression...")
    # keep predictions to feed them ordered into the Tracker
    # TODO: how to deal with large files?
    all_preds = {}
    with tqdm(total=len(dataloader)*batch_size, desc="Running suppression", ncols=0, disable=not verbose) as pbar:
        for batch_i, (img, _, shapes) in enumerate(dataloader):

            if gp: gp(batch_i / len(dataloader), pbar.__str__())

            inf_out = inference[batch_i]
            with torch.no_grad():
                output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres)

            # Format results
            for si, pred in enumerate(output):
                # Clip boxes to image bounds and resize to input shape
                clip_boxes(pred, (height, width))
                box = pred[:, :4].clone()  # xyxy
                confs = pred[:, 4].clone().tolist()
                scale_boxes(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                
                # get boxes into tracker input format - normalized xyxy with confidence score
                # confidence score currently not used by tracker; set to 1.0
                boxes = None
                if box.shape[0]:
                    real_width = shapes[si][0][1]
                    real_height = shapes[si][0][0]
                    do_norm = partial(norm, w=shapes[si][0][1], h=shapes[si][0][0])
                    normed = list((map(do_norm, box[:, :4].tolist())))
                    boxes = np.stack([ [*bb, conf] for bb, conf in zip(normed, confs) ])
                frame_num = (batch_i, si)
                all_preds[frame_num] = boxes

            pbar.update(1*batch_size)
         
    return all_preds, real_width, real_height

def do_tracking(all_preds, image_meter_width, image_meter_height, gp=None, max_age=MAX_AGE, iou_thres=IOU_THRES, min_hits=MIN_HITS, min_length=MIN_LENGTH, verbose=True): 

    if (gp): gp(0, "Tracking...")

    # Initialize tracker
    clip_info = {
        'start_frame': 0,
        'end_frame': len(all_preds),
        'image_meter_width': image_meter_width,
        'image_meter_height': image_meter_height
    }
    tracker = Tracker(clip_info, args={ 'max_age': max_age, 'min_hits': 0, 'iou_threshold': iou_thres}, min_hits=min_hits)
    
    # Run tracking
    with tqdm(total=len(all_preds), desc="Running tracking", ncols=0, disable=not verbose) as pbar:
        for i, key in enumerate(sorted(all_preds.keys())):
            if gp: gp(i / len(all_preds), pbar.__str__())
            boxes = all_preds[key]
            if boxes is not None:
                tracker.update(boxes)
            else:
                tracker.update()
            pbar.update(1)

    json_data = tracker.finalize(min_length=min_length)

    return json_data


@patch('json.encoder.c_make_encoder', None)
def json_dump_round_float(some_object, out_path, num_digits=4):
    """Write a json file to disk with a specified level of precision.
    See: https://gist.github.com/Sukonnik-Illia/ed9b2bec1821cad437d1b8adb17406a3
    """
    # saving original method
    of = json.encoder._make_iterencode
    def inner(*args, **kwargs):
        args = list(args)
        # fifth argument is float formater which will we replace
        fmt_str = '{:.' + str(num_digits) + 'f}'
        args[4] = lambda o: fmt_str.format(o)
        return of(*args, **kwargs)
    
    with patch('json.encoder._make_iterencode', wraps=inner):
        return json.dump(some_object, open(out_path, 'w'), indent=2)
    


def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        max_det=300,
):
    """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
    if isinstance(prediction, (list, tuple)):  # YOLOv5 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    xc = prediction[..., 4] > conf_thres  # candidates

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    redundant = True  # require redundant detections
    merge = False  # use merge-NMS

    output = [torch.zeros((0, 6), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference

            
        # Keep boxes that pass confidence threshold
        x = x[xc[xi]]  # confidence

        # If none remain process next image
        if not x.shape[0]:
            continue
            
        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf


        # Box/Mask
        box = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)
        mask = x[:, 6:]  # zero columns if no masks

        # Detections matrix nx6 (xyxy, conf, cls)
        conf, j = x[:, 5:6].max(1, keepdim=True)
        x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]


        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes

        # Batched NMS
        boxes  = x[:, :4]  # boxes (offset by class), scores
        scores = x[:, 4]
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS

        i = i[:max_det]  # limit detections
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if mps:
            output[xi] = output[xi].to(device)
        
        logging = False

    return output