# Copyright (c) OpenMMLab. All rights reserved. import math from typing import Sequence import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import build_conv_layer, build_norm_layer from mmcv.runner.base_module import BaseModule from mmcv.utils import to_2tuple from mmpose.models.builder import TRANSFORMER from easydict import EasyDict from einops import rearrange, repeat from mmcv.runner import force_fp32 from mmcv.cnn.bricks.transformer import (BaseTransformerLayer, TransformerLayerSequence, build_transformer_layer_sequence) from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE) import torch.distributions as distributions from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention from torch.nn.init import normal_ import copy import warnings from mmcv.cnn import build_activation_layer, build_norm_layer, xavier_init from utils.human_models import smpl_x from config import cfg def point_sample(input, point_coords, **kwargs): """ A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors. Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside [0, 1] x [0, 1] square. Args: input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid. point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains [0, 1] x [0, 1] normalized point coordinates. Returns: output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains features for points in `point_coords`. The features are obtained via bilinear interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`. """ add_dim = False if point_coords.dim() == 3: add_dim = True point_coords = point_coords.unsqueeze(2) output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs) if add_dim: output = output.squeeze(3) return output def nlc_to_nchw(x, hw_shape): """Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. Args: x (Tensor): The input tensor of shape [N, L, C] before conversion. hw_shape (Sequence[int]): The height and width of output feature map. Returns: Tensor: The output tensor of shape [N, C, H, W] after conversion. """ H, W = hw_shape assert len(x.shape) == 3 B, L, C = x.shape assert L == H * W, 'The seq_len does not match H, W' return x.transpose(1, 2).reshape(B, C, H, W).contiguous() def nchw_to_nlc(x): """Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. Args: x (Tensor): The input tensor of shape [N, C, H, W] before conversion. Returns: Tensor: The output tensor of shape [N, L, C] after conversion. """ assert len(x.shape) == 4 return x.flatten(2).transpose(1, 2).contiguous() class AdaptivePadding(nn.Module): """Applies padding to input (if needed) so that input can get fully covered by filter you specified. It support two modes "same" and "corner". The "same" mode is same with "SAME" padding mode in TensorFlow, pad zero around input. The "corner" mode would pad zero to bottom right. Args: kernel_size (int | tuple): Size of the kernel: stride (int | tuple): Stride of the filter. Default: 1: dilation (int | tuple): Spacing between kernel elements. Default: 1 padding (str): Support "same" and "corner", "corner" mode would pad zero to bottom right, and "same" mode would pad zero around input. Default: "corner". Example: >>> kernel_size = 16 >>> stride = 16 >>> dilation = 1 >>> input = torch.rand(1, 1, 15, 17) >>> adap_pad = AdaptivePadding( >>> kernel_size=kernel_size, >>> stride=stride, >>> dilation=dilation, >>> padding="corner") >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) >>> input = torch.rand(1, 1, 16, 17) >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) """ def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): super(AdaptivePadding, self).__init__() assert padding in ('same', 'corner') kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) padding = to_2tuple(padding) dilation = to_2tuple(dilation) self.padding = padding self.kernel_size = kernel_size self.stride = stride self.dilation = dilation def get_pad_shape(self, input_shape): input_h, input_w = input_shape kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.stride output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) pad_h = max((output_h - 1) * stride_h + (kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) pad_w = max((output_w - 1) * stride_w + (kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) return pad_h, pad_w def forward(self, x): pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) if pad_h > 0 or pad_w > 0: if self.padding == 'corner': x = F.pad(x, [0, pad_w, 0, pad_h]) elif self.padding == 'same': x = F.pad(x, [ pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2 ]) return x class PatchEmbed(BaseModule): """Image to Patch Embedding. We use a conv layer to implement PatchEmbed. Args: in_channels (int): The num of input channels. Default: 3 embed_dims (int): The dimensions of embedding. Default: 768 conv_type (str): The config dict for embedding conv layer type selection. Default: "Conv2d. kernel_size (int): The kernel_size of embedding conv. Default: 16. stride (int): The slide stride of embedding conv. Default: None (Would be set as `kernel_size`). padding (int | tuple | string ): The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support "same" and "corner" now. Default: "corner". dilation (int): The dilation rate of embedding conv. Default: 1. bias (bool): Bias of embed conv. Default: True. norm_cfg (dict, optional): Config dict for normalization layer. Default: None. input_size (int | tuple | None): The size of input, which will be used to calculate the out size. Only work when `dynamic_size` is False. Default: None. init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization. Default: None. """ def __init__( self, in_channels=3, embed_dims=768, conv_type='Conv2d', kernel_size=16, stride=16, padding='corner', dilation=1, bias=True, norm_cfg=None, input_size=None, init_cfg=None, ): super(PatchEmbed, self).__init__(init_cfg=init_cfg) self.embed_dims = embed_dims if stride is None: stride = kernel_size kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) if isinstance(padding, str): self.adap_padding = AdaptivePadding( kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding) # disable the padding of conv padding = 0 else: self.adap_padding = None padding = to_2tuple(padding) self.projection = build_conv_layer( dict(type=conv_type), in_channels=in_channels, out_channels=embed_dims, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, embed_dims)[1] else: self.norm = None if input_size: input_size = to_2tuple(input_size) # `init_out_size` would be used outside to # calculate the num_patches # when `use_abs_pos_embed` outside self.init_input_size = input_size if self.adap_padding: pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) input_h, input_w = input_size input_h = input_h + pad_h input_w = input_w + pad_w input_size = (input_h, input_w) # https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html h_out = (input_size[0] + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) // stride[0] + 1 w_out = (input_size[1] + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) // stride[1] + 1 self.init_out_size = (h_out, w_out) else: self.init_input_size = None self.init_out_size = None def forward(self, x): """ Args: x (Tensor): Has shape (B, C, H, W). In most case, C is 3. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, out_h * out_w, embed_dims) - out_size (tuple[int]): Spatial shape of x, arrange as (out_h, out_w). """ if self.adap_padding: x = self.adap_padding(x) x = self.projection(x) out_size = (x.shape[2], x.shape[3]) x = x.flatten(2).transpose(1, 2) if self.norm is not None: x = self.norm(x) return x, out_size class PatchMerging(BaseModule): """Merge patch feature map. This layer groups feature map by kernel_size, and applies norm and linear layers to the grouped feature map. Our implementation uses `nn.Unfold` to merge patch, which is about 25% faster than original implementation. Instead, we need to modify pretrained models for compatibility. Args: in_channels (int): The num of input channels. to gets fully covered by filter and stride you specified.. Default: True. out_channels (int): The num of output channels. kernel_size (int | tuple, optional): the kernel size in the unfold layer. Defaults to 2. stride (int | tuple, optional): the stride of the sliding blocks in the unfold layer. Default: None. (Would be set as `kernel_size`) padding (int | tuple | string ): The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support "same" and "corner" now. Default: "corner". dilation (int | tuple, optional): dilation parameter in the unfold layer. Default: 1. bias (bool, optional): Whether to add bias in linear layer or not. Defaults: False. norm_cfg (dict, optional): Config dict for normalization layer. Default: dict(type='LN'). init_cfg (dict, optional): The extra config for initialization. Default: None. """ def __init__(self, in_channels, out_channels, kernel_size=2, stride=None, padding='corner', dilation=1, bias=False, norm_cfg=dict(type='LN'), init_cfg=None): super().__init__(init_cfg=init_cfg) self.in_channels = in_channels self.out_channels = out_channels if stride: stride = stride else: stride = kernel_size kernel_size = to_2tuple(kernel_size) stride = to_2tuple(stride) dilation = to_2tuple(dilation) if isinstance(padding, str): self.adap_padding = AdaptivePadding( kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding) # disable the padding of unfold padding = 0 else: self.adap_padding = None padding = to_2tuple(padding) self.sampler = nn.Unfold( kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride) sample_dim = kernel_size[0] * kernel_size[1] * in_channels if norm_cfg is not None: self.norm = build_norm_layer(norm_cfg, sample_dim)[1] else: self.norm = None self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) def forward(self, x, input_size): """ Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W). """ B, L, C = x.shape assert isinstance(input_size, Sequence), f'Expect ' \ f'input_size is ' \ f'`Sequence` ' \ f'but get {input_size}' H, W = input_size assert L == H * W, 'input feature has wrong size' x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W # Use nn.Unfold to merge patch. About 25% faster than original method, # but need to modify pretrained model for compatibility if self.adap_padding: x = self.adap_padding(x) H, W = x.shape[-2:] x = self.sampler(x) # if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * (self.sampler.kernel_size[0] - 1) - 1) // self.sampler.stride[0] + 1 out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * (self.sampler.kernel_size[1] - 1) - 1) // self.sampler.stride[1] + 1 output_size = (out_h, out_w) x = x.transpose(1, 2) # B, H/2*W/2, 4*C x = self.norm(x) if self.norm else x x = self.reduction(x) return x, output_size def inverse_sigmoid(x, eps=1e-5): """Inverse function of sigmoid. Args: x (Tensor): The tensor to do the inverse. eps (float): EPS avoid numerical overflow. Defaults 1e-5. Returns: Tensor: The x has passed the inverse function of sigmoid, has same shape with input. """ x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) @TRANSFORMER_LAYER_SEQUENCE.register_module() class DetrTransformerEncoder_zero_layer(): def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs): pass def __call__(self, query, key, value, query_pos=None, key_pos=None, attn_masks=None, query_key_padding_mask=None, key_padding_mask=None, **kwargs): query = query + query_pos return query @TRANSFORMER_LAYER.register_module() class DetrTransformerDecoderLayer_grouped(BaseTransformerLayer): def __init__(self, attn_cfgs, feedforward_channels, ffn_dropout=0.0, operation_order=None, act_cfg=dict(type='ReLU', inplace=True), norm_cfg=dict(type='LN'), ffn_num_fcs=2, num_joints=17, **kwargs): super(DetrTransformerDecoderLayer_grouped, self).__init__( attn_cfgs=attn_cfgs, feedforward_channels=feedforward_channels, ffn_dropout=ffn_dropout, operation_order=operation_order, act_cfg=act_cfg, norm_cfg=norm_cfg, ffn_num_fcs=ffn_num_fcs, **kwargs) # assert len(operation_order) == 6 # assert set(operation_order) == set( # ['self_attn', 'norm', 'cross_attn', 'ffn']) self.num_joints = num_joints # self.num_joints = len(smpl_x.pos_joint_part['rhand']) # self.num_joints = len(smpl_x.pos_joint_part['body']) + len(smpl_x.pos_joint_part['rhand']) + len(smpl_x.pos_joint_part['lhand']) def forward(self, query, key=None, value=None, query_pos=None, key_pos=None, attn_masks=None, query_key_padding_mask=None, key_padding_mask=None, **kwargs): norm_index = 0 attn_index = 0 ffn_index = 0 identity = query if attn_masks is None: attn_masks = [None for _ in range(self.num_attn)] elif isinstance(attn_masks, torch.Tensor): attn_masks = [ copy.deepcopy(attn_masks) for _ in range(self.num_attn) ] warnings.warn(f'Use same attn_mask in all attentions in ' f'{self.__class__.__name__} ') else: assert len(attn_masks) == self.num_attn, f'The length of ' \ f'attn_masks {len(attn_masks)} must be equal ' \ f'to the number of attention in ' \ f'operation_order {self.num_attn}' for layer in self.operation_order: if layer == 'self_attn': # print(query.shape) assert query.size(0) % self.num_joints == 0, f'query.shape: {query.shape}, num_joints: {self.num_joints}' num_group = query.size(0) // self.num_joints bs = query.size(1) temp_query = rearrange(query, '(g k) b c -> k (g b) c', g=num_group, k=self.num_joints) temp_identity = rearrange(identity, '(g k) b c -> k (g b) c', g=num_group, k=self.num_joints) temp_query_pos = rearrange(query_pos, '(g k) b c -> k (g b) c', g=num_group, k=self.num_joints) temp_key = temp_value = temp_query query = self.attentions[attn_index]( temp_query, temp_key, temp_value, temp_identity if self.pre_norm else None, query_pos=temp_query_pos, key_pos=temp_query_pos, attn_mask=attn_masks[attn_index], key_padding_mask=query_key_padding_mask, **kwargs) query = rearrange(query, 'k (g b) c -> (g k) b c', g=num_group, b=bs) attn_index += 1 identity = query elif layer == 'norm': query = self.norms[norm_index](query) norm_index += 1 elif layer == 'cross_attn': query = self.attentions[attn_index]( query, key, value, identity if self.pre_norm else None, query_pos=query_pos, key_pos=key_pos, attn_mask=attn_masks[attn_index], key_padding_mask=key_padding_mask, **kwargs) attn_index += 1 identity = query elif layer == 'ffn': query = self.ffns[ffn_index]( query, identity if self.pre_norm else None) ffn_index += 1 if 'cross_attn' not in self.operation_order: query = query + value.sum() * 0 return query @TRANSFORMER_LAYER_SEQUENCE.register_module(force=True) class DeformableDetrTransformerDecoder(TransformerLayerSequence): """Implements the decoder in DETR transformer. Args: return_intermediate (bool): Whether to return intermediate outputs. coder_norm_cfg (dict): Config of last normalization layer. Default: `LN`. """ def __init__(self, *args, return_intermediate=False, **kwargs): super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs) self.return_intermediate = return_intermediate def forward(self, query, *args, reference_points=None, valid_ratios=None, reg_branches=None, fc_coord=None, **kwargs): output = query intermediate = [] intermediate_reference_points = [] for lid, layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = reference_points[:, :, None] * \ torch.cat([valid_ratios, valid_ratios], -1)[:, None] else: assert reference_points.shape[-1] == 3 # print(reference_points.shape, valid_ratios.shape) # [48,65,3], [48,4,3] reference_points_input = reference_points[:, :, None, :2] * \ valid_ratios[:, None] # assert reference_points.shape[-1] == 2 # reference_points_input = reference_points[:, :, None] * \ # valid_ratios[:, None] # print(output.shape, reference_points_input.shape) output = layer( output, *args, reference_points=reference_points_input, **kwargs) output = output.permute(1, 0, 2) # if reg_branches is not None: # tmp = reg_branches[lid](output) # # if fc_coord is not None: # tmp = fc_coord(tmp) # # if reference_points.shape[-1] == 4: # new_reference_points = tmp + inverse_sigmoid( # reference_points) # new_reference_points = new_reference_points.sigmoid() # else: # assert reference_points.shape[-1] == 3 # new_reference_points = tmp # new_reference_points[..., :3] = tmp[ # ..., :3] + inverse_sigmoid(reference_points) # new_reference_points = new_reference_points.sigmoid() # # else: # # assert reference_points.shape[-1] == 2 # # new_reference_points = tmp # # new_reference_points[..., :2] = tmp[ # # ..., :2] + inverse_sigmoid(reference_points) # # new_reference_points = new_reference_points.sigmoid() # # # reference_points = new_reference_points.detach() # # reference_points = new_reference_points # reference_points = new_reference_points output = output.permute(1, 0, 2) if self.return_intermediate: intermediate.append(output) intermediate_reference_points.append(reference_points) if self.return_intermediate: return torch.stack(intermediate), torch.stack( intermediate_reference_points) return output, reference_points class Linear_with_norm(nn.Module): def __init__(self, in_channel, out_channel, bias=True, norm=True): super(Linear_with_norm, self).__init__() self.bias = bias self.norm = norm self.linear = nn.Linear(in_channel, out_channel, bias) nn.init.xavier_uniform_(self.linear.weight, gain=0.01) def forward(self, x): y = x.matmul(self.linear.weight.t()) if self.norm: x_norm = torch.norm(x, dim=1, keepdim=True) y = y / x_norm if self.bias: y = y + self.linear.bias return y @TRANSFORMER.register_module() class Transformer(BaseModule): """Implements the DETR transformer. Following the official DETR implementation, this module copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MultiheadAttention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers See `paper: End-to-End Object Detection with Transformers `_ for details. Args: encoder (`mmcv.ConfigDict` | Dict): Config of TransformerEncoder. Defaults to None. decoder ((`mmcv.ConfigDict` | Dict)): Config of TransformerDecoder. Defaults to None init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Defaults to None. """ def __init__(self, encoder=None, decoder=None, init_cfg=None): super(Transformer, self).__init__(init_cfg=init_cfg) self.encoder = build_transformer_layer_sequence(encoder) self.decoder = build_transformer_layer_sequence(decoder) # self.embed_dims = self.encoder.embed_dims def init_weights(self): # follow the official DETR to init parameters for m in self.modules(): if hasattr(m, 'weight') and m.weight.dim() > 1: xavier_init(m, distribution='uniform') self._is_init = True def forward(self, x, mask, query_embed, pos_embed): """Forward function for `Transformer`. Args: x (Tensor): Input query with shape [bs, c, h, w] where c = embed_dims. mask (Tensor): The key_padding_mask used for encoder and decoder, with shape [bs, h, w]. query_embed (Tensor): The query embedding for decoder, with shape [num_query, c]. pos_embed (Tensor): The positional encoding for encoder and decoder, with the same shape as `x`. Returns: tuple[Tensor]: results of decoder containing the following tensor. - out_dec: Output from decoder. If return_intermediate_dec \ is True output has shape [num_dec_layers, bs, num_query, embed_dims], else has shape [1, bs, \ num_query, embed_dims]. - memory: Output results from encoder, with shape \ [bs, embed_dims, h, w]. """ bs, c, h, w = x.shape # use `view` instead of `flatten` for dynamically exporting to ONNX x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c] pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat( 1, bs, 1) # [num_query, dim] -> [num_query, bs, dim] mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w] memory = self.encoder( query=x, key=None, value=None, query_pos=pos_embed, query_key_padding_mask=mask) target = torch.zeros_like(query_embed) # out_dec: [num_layers, num_query, bs, dim] out_dec = self.decoder( query=target, key=memory, value=memory, key_pos=pos_embed, query_pos=query_embed, key_padding_mask=mask) out_dec = out_dec.transpose(1, 2) memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) return out_dec, memory @TRANSFORMER.register_module() class PoseurTransformer_v3(Transformer): """ add noise training """ def __init__(self, as_two_stage=False, num_feature_levels=4, two_stage_num_proposals=300, num_joints=17, use_soft_argmax=False, use_soft_argmax_def=False, proposal_feature='backbone_s', # or encoder_memory image_size=[192, 256], init_q_sigmoid=False, soft_arg_stride=4, add_feat_2_query=False, query_pose_emb=True, num_noise_sample=3, num_noise_point=4, noise_sigma=0.2, embed_dims=256, **kwargs): super(PoseurTransformer_v3, self).__init__(**kwargs) assert query_pose_emb == True # self.num_noise_sample = num_noise_sample self.num_noise_sample = num_noise_sample self.num_noise_point = num_noise_point self.noise_sigma = noise_sigma self.add_feat_2_query = add_feat_2_query self.as_two_stage = as_two_stage self.num_feature_levels = num_feature_levels self.two_stage_num_proposals = two_stage_num_proposals try: self.embed_dims = self.encoder.embed_dims except: self.embed_dims = embed_dims self.num_joints = num_joints # self.num_joints = 17 # self.num_joints = len(smpl_x.pos_joint_part['rhand']) # body_joints+bboxes # self.num_joints = len(smpl_x.pos_joint_part['body']) + len(smpl_x.pos_joint_part['rhand']) + len(smpl_x.pos_joint_part['lhand']) self.use_soft_argmax = use_soft_argmax self.use_soft_argmax_def = use_soft_argmax_def assert not (self.use_soft_argmax & self.use_soft_argmax_def) self.init_q_sigmoid = init_q_sigmoid self.image_size = image_size self.soft_arg_stride = soft_arg_stride self.proposal_feature = proposal_feature self.query_pose_emb = query_pose_emb self.prior = distributions.MultivariateNormal(torch.zeros(2), torch.eye(2) * self.noise_sigma) self.init_layers() def init_layers(self): """Initialize layers of the DeformableDetrTransformer.""" self.level_embeds = nn.Parameter( torch.Tensor(self.num_feature_levels, self.embed_dims)) if self.as_two_stage: self.avg_pool = nn.AdaptiveAvgPool2d(1) # self.fc_sigma = Linear_with_norm(self.embed_dims, self.num_joints * 2, norm=False) self.fc_sigma = Linear_with_norm(self.embed_dims, self.num_joints * 3, norm=False) if self.use_soft_argmax: self.soft_argmax_coord = Heatmap1DHead(in_channels=self.embed_dims, expand_ratio=2, hidden_dims=(512,), image_size=self.image_size, stride=self.soft_arg_stride) self.fc_layers = [self.fc_sigma] elif self.use_soft_argmax_def: self.soft_argmax_coord = Heatmap2DHead(in_channels=self.embed_dims, image_size=self.image_size, stride=self.soft_arg_stride) self.fc_layers = [self.fc_sigma] else: # self.fc_coord = Linear_with_norm(self.embed_dims, self.num_joints * 2) self.fc_coord = Linear_with_norm(self.embed_dims, self.num_joints * 3) self.fc_layers = [self.fc_coord, self.fc_sigma] if self.query_pose_emb: self.pos_trans = nn.Linear(self.embed_dims * 2, self.embed_dims) self.pos_trans_norm = nn.LayerNorm(self.embed_dims) # self.pos_embed = nn.Embedding(17,self.embed_dims) self.pos_embed = nn.Embedding(self.num_joints, self.embed_dims) else: self.pos_trans = nn.Linear(self.embed_dims * 2, self.embed_dims * 2) self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) else: self.reference_points = nn.Linear(self.embed_dims, 2) self.fp16_enabled = False def init_weights(self): """Initialize the transformer weights.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MultiScaleDeformableAttention): m.init_weights() if not self.as_two_stage: xavier_init(self.reference_points, distribution='uniform', bias=0.) normal_(self.level_embeds) if self.use_soft_argmax: self.soft_argmax_coord.init_weights() if self.as_two_stage: for m in self.fc_layers: if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight, gain=0.01) def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes): """Generate proposals from encoded memory. Args: memory (Tensor) : The output of encoder, has shape (bs, num_key, embed_dim). num_key is equal the number of points on feature map from all level. memory_padding_mask (Tensor): Padding mask for memory. has shape (bs, num_key). spatial_shapes (Tensor): The shape of all feature maps. has shape (num_level, 2). Returns: tuple: A tuple of feature map and bbox prediction. - output_memory (Tensor): The input of decoder, \ has shape (bs, num_key, embed_dim). num_key is \ equal the number of points on feature map from \ all levels. - output_proposals (Tensor): The normalized proposal \ after a inverse sigmoid, has shape \ (bs, num_keys, 4). """ N, S, C = memory.shape proposals = [] _cur = 0 for lvl, (H, W) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view( N, H, W, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = torch.meshgrid( torch.linspace( 0, H - 1, H, dtype=torch.float32, device=memory.device), torch.linspace( 0, W - 1, W, dtype=torch.float32, device=memory.device)) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) # proposal = torch.cat((grid, wh), -1).view(N, -1, 4) proposal = grid.view(N, -1, 2) proposals.append(proposal) _cur += (H * W) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all( -1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) output_proposals = output_proposals.masked_fill( memory_padding_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill( ~output_proposals_valid, float('inf')) output_memory = memory output_memory = output_memory.masked_fill( memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) output_memory = self.enc_output_norm(self.enc_output(output_memory)) return output_memory, output_proposals @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): """Get the reference points used in decoder. Args: spatial_shapes (Tensor): The shape of all feature maps, has shape (num_level, 2). valid_ratios (Tensor): The radios of valid points on the feature map, has shape (bs, num_levels, 2) device (obj:`device`): The device where reference_points should be. Returns: Tensor: reference points used in decoder, has \ shape (bs, num_keys, num_levels, 2). """ # print(spatial_shapes) reference_points_list = [] for lvl, (H, W) in enumerate(spatial_shapes): # TODO check this 0.5 ref_y, ref_x = torch.meshgrid( torch.linspace( 0.5, H - 0.5, H, dtype=torch.float32, device=device), torch.linspace( 0.5, W - 0.5, W, dtype=torch.float32, device=device)) ref_y = ref_y.reshape(-1)[None] / ( valid_ratios[:, None, lvl, 1] * H) ref_x = ref_x.reshape(-1)[None] / ( valid_ratios[:, None, lvl, 0] * W) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) # print(reference_points_list[-1]) # range:(0,1) # print(H, W) [8,6] reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def get_valid_ratio(self, mask): """Get the valid radios of feature maps of all level.""" _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def get_proposal_pos_embed(self, proposals, num_pos_feats=128, temperature=10000): """Get the position embedding of proposal.""" num_pos_feats = self.embed_dims // 3 + 1 scale = 2 * math.pi dim_t = torch.arange( num_pos_feats, dtype=torch.float32, device=proposals.device) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) # N, L, 2 if self.init_q_sigmoid: proposals = proposals.sigmoid() * scale else: proposals = proposals * scale # N, L, 3, 86 pos = proposals[:, :, :, None] / dim_t # N, L, 3, 43, 2 pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) return pos[:, :, :self.embed_dims] @force_fp32(apply_to=('mlvl_feats', 'query_embed', 'mlvl_pos_embeds')) def forward(self, mlvl_feats, mlvl_masks, query_embed, mlvl_pos_embeds, reg_branches=None, fc_coord=None, cls_branches=None, coord_init=None, query_init=None, **kwargs): assert self.as_two_stage or query_embed is not None feat_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (feat, mask, pos_embed) in enumerate( zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): bs, c, h, w = feat.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) feat = feat.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) feat_flatten.append(feat) mask_flatten.append(mask) feat_flatten = torch.cat(feat_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor( spatial_shapes, dtype=torch.long, device=feat_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros( (1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack( [self.get_valid_ratio(m) for m in mlvl_masks], 1) # [bs, H*W, num_lvls, 2] # print(spatial_shape) reference_points = \ self.get_reference_points(spatial_shapes, valid_ratios, device=feat.device) # print(reference_points.shape, valid_ratios.shape) # [bs, 4080, 4, 2]; [bs, 4, 2] feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute( 1, 0, 2) # (H*W, bs, embed_dims) memory = self.encoder( query=feat_flatten, key=None, value=None, query_pos=lvl_pos_embed_flatten, query_key_padding_mask=mask_flatten, spatial_shapes=spatial_shapes, reference_points=reference_points, level_start_index=level_start_index, valid_ratios=valid_ratios, **kwargs) memory = memory.permute(1, 0, 2) bs, _, c = memory.shape if self.proposal_feature == 'backbone_l': x = mlvl_feats[0] elif self.proposal_feature == 'backbone_s': x = mlvl_feats[-1] point_sample_feat = mlvl_feats[-1] elif self.proposal_feature == 'encoder_memory_l': x = memory.permute(0, 2, 1)[:, :, :int(level_start_index[1])].view_as(mlvl_feats[0]) point_sample_feat = memory.permute(0, 2, 1)[:, :, :int(level_start_index[1])].view_as(mlvl_feats[0]) elif self.proposal_feature == 'encoder_memory_s': x = memory.permute(0, 2, 1)[:, :, int(level_start_index[-1]):].view_as(mlvl_feats[-1]) else: raise NotImplementedError BATCH_SIZE = x.shape[0] if coord_init is not None: pred_jts = coord_init enc_outputs = None else: if self.use_soft_argmax: out_coord = self.soft_argmax_coord(x) # bs, 17, 2 assert out_coord.shape[2] == 2 x = self.avg_pool(x).reshape(BATCH_SIZE, -1) out_sigma = self.fc_sigma(x).reshape(BATCH_SIZE, self.num_joints, -1) elif self.use_soft_argmax_def: out_coord = self.soft_argmax_coord(x) # bs, 17, 2 assert out_coord.shape[2] == 2 x = self.avg_pool(x).reshape(BATCH_SIZE, -1) out_sigma = self.fc_sigma(x).reshape(BATCH_SIZE, self.num_joints, -1) else: x = self.avg_pool(x).reshape(BATCH_SIZE, -1) out_coord = self.fc_coord(x).reshape(BATCH_SIZE, self.num_joints, 3) assert out_coord.shape[2] == 3 out_sigma = self.fc_sigma(x).reshape(BATCH_SIZE, self.num_joints, -1) # (B, N, 3) pred_jts = out_coord.reshape(BATCH_SIZE, self.num_joints, 3) sigma = out_sigma.reshape(BATCH_SIZE, self.num_joints, -1).sigmoid() scores = 1 - sigma scores = torch.mean(scores, dim=2, keepdim=True) enc_outputs = EasyDict( pred_jts=pred_jts, sigma=sigma, maxvals=scores.float(), ) reference_points = pred_jts.detach() reference_points_cliped = reference_points.clip(0, 1) init_reference_out = reference_points_cliped if query_init is not None: query = query_init else: pred_jts_pos_embed = self.get_proposal_pos_embed(reference_points.detach()) reference_points_pos_embed = self.get_proposal_pos_embed(reference_points_cliped.detach()) # query init here if self.add_feat_2_query: query_feat = point_sample(point_sample_feat, init_reference_out, align_corners=False).permute(0, 2, 1) reference_points_pos_embed = reference_points_pos_embed + query_feat query_pos_emb = torch.cat([pred_jts_pos_embed, reference_points_pos_embed], dim=2) pos_trans_out = self.pos_trans_norm(self.pos_trans(query_pos_emb)) query = pos_trans_out query_pos = self.pos_embed.weight.clone().repeat(bs, 1, 1).contiguous() # decoder query = query.permute(1, 0, 2) memory = memory.permute(1, 0, 2) query_pos = query_pos.permute(1, 0, 2) inter_states, inter_references = self.decoder( query=query, key=None, value=memory, query_pos=query_pos, key_padding_mask=mask_flatten, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, reg_branches=reg_branches, fc_coord=fc_coord, **kwargs) inter_references_out = inter_references return memory.permute(1, 0, 2), spatial_shapes, level_start_index, inter_states, init_reference_out, \ inter_references_out, enc_outputs