# Copyright (c) OpenMMLab. All rights reserved. import torch from torch.nn import functional as F def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def batch_rodrigues(theta): """Convert axis-angle representation to rotation matrix. Args: theta: size = [B, 3] Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ l2norm = torch.norm(theta + 1e-8, p=2, dim=1) angle = torch.unsqueeze(l2norm, -1) normalized = torch.div(theta, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * normalized], dim=1) return quat_to_rotmat(quat) def quat_to_rotmat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1],\ norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(B, 3, 3) return rotMat