# Copyright (c) OpenMMLab. All rights reserved. import math import torch from functools import partial import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from ..builder import BACKBONES from .base_backbone import BaseBackbone from einops import repeat class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self): return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.dim = dim if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2) self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio)) self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1])) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio // 2 - 1)) def forward(self, x, **kwargs): B, C, H, W = x.shape x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x @BACKBONES.register_module() class ViT(BaseBackbone): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False, frozen_stages=-1, ratio=1, last_norm=True, patch_padding='pad', freeze_attn=False, freeze_ffn=False, task_tokens_num=1+1+2+2+25 ): # Protect mutable default arguments super(ViT, self).__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.frozen_stages = frozen_stages self.use_checkpoint = use_checkpoint self.patch_padding = patch_padding self.freeze_attn = freeze_attn self.freeze_ffn = freeze_ffn self.depth = depth self.task_tokens_num = task_tokens_num if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio) num_patches = self.patch_embed.num_patches # task tokens for HPS estimation self.task_tokens = nn.Parameter(torch.zeros(1, task_tokens_num, embed_dim)) trunc_normal_(self.task_tokens, std=.02) # since the pretraining model has class token self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, ) for i in range(depth)]) self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) self._freeze_stages() def _freeze_stages(self): """Freeze parameters.""" if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = self.blocks[i] m.eval() for param in m.parameters(): param.requires_grad = False if self.freeze_attn: for i in range(0, self.depth): m = self.blocks[i] m.attn.eval() m.norm1.eval() for param in m.attn.parameters(): param.requires_grad = False for param in m.norm1.parameters(): param.requires_grad = False if self.freeze_ffn: self.pos_embed.requires_grad = False self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False for i in range(0, self.depth): m = self.blocks[i] m.mlp.eval() m.norm2.eval() for param in m.mlp.parameters(): param.requires_grad = False for param in m.norm2.parameters(): param.requires_grad = False def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ super().init_weights(pretrained, patch_padding=self.patch_padding) if pretrained is None: def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) self.apply(_init_weights) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x) task_tokens = repeat(self.task_tokens, '() n d -> b n d', b=B) if self.pos_embed is not None: # fit for multiple GPU training # since the first element for pos embed (sin-cos manner) is zero, it will cause no difference x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1] x = torch.cat((task_tokens, x), dim=1) for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.last_norm(x) task_tokens = x[:, :self.task_tokens_num] # [N,J,C] # task_tokens = torch.cat(task_tokens_, dim=-1) xp = x[:, self.task_tokens_num:] # [N,Hp*Wp,C] xp = xp.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous() return xp, task_tokens def forward(self, x): x = self.forward_features(x) return x def train(self, mode=True): """Convert the model into training mode.""" super().train(mode) self._freeze_stages()