# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import ConvModule, constant_init, kaiming_init, normal_init from mmcv.utils.parrots_wrapper import _BatchNorm from ..builder import BACKBONES from .base_backbone import BaseBackbone def make_vgg_layer(in_channels, out_channels, num_blocks, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), dilation=1, with_norm=False, ceil_mode=False): layers = [] for _ in range(num_blocks): layer = ConvModule( in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=dilation, padding=dilation, bias=True, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg) layers.append(layer) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode)) return layers @BACKBONES.register_module() class VGG(BaseBackbone): """VGG backbone. Args: depth (int): Depth of vgg, from {11, 13, 16, 19}. with_norm (bool): Use BatchNorm or not. num_classes (int): number of classes for classification. num_stages (int): VGG stages, normally 5. dilations (Sequence[int]): Dilation of each stage. out_indices (Sequence[int]): Output from which stages. If only one stage is specified, a single tensor (feature map) is returned, otherwise multiple stages are specified, a tuple of tensors will be returned. When it is None, the default behavior depends on whether num_classes is specified. If num_classes <= 0, the default value is (4, ), outputting the last feature map before classifier. If num_classes > 0, the default value is (5, ), outputting the classification score. Default: None. frozen_stages (int): Stages to be frozen (all param fixed). -1 means not freezing any parameters. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. ceil_mode (bool): Whether to use ceil_mode of MaxPool. Default: False. with_last_pool (bool): Whether to keep the last pooling before classifier. Default: True. """ # Parameters to build layers. Each element specifies the number of conv in # each stage. For example, VGG11 contains 11 layers with learnable # parameters. 11 is computed as 11 = (1 + 1 + 2 + 2 + 2) + 3, # where 3 indicates the last three fully-connected layers. arch_settings = { 11: (1, 1, 2, 2, 2), 13: (2, 2, 2, 2, 2), 16: (2, 2, 3, 3, 3), 19: (2, 2, 4, 4, 4) } def __init__(self, depth, num_classes=-1, num_stages=5, dilations=(1, 1, 1, 1, 1), out_indices=None, frozen_stages=-1, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), norm_eval=False, ceil_mode=False, with_last_pool=True): super().__init__() if depth not in self.arch_settings: raise KeyError(f'invalid depth {depth} for vgg') assert num_stages >= 1 and num_stages <= 5 stage_blocks = self.arch_settings[depth] self.stage_blocks = stage_blocks[:num_stages] assert len(dilations) == num_stages self.num_classes = num_classes self.frozen_stages = frozen_stages self.norm_eval = norm_eval with_norm = norm_cfg is not None if out_indices is None: out_indices = (5, ) if num_classes > 0 else (4, ) assert max(out_indices) <= num_stages self.out_indices = out_indices self.in_channels = 3 start_idx = 0 vgg_layers = [] self.range_sub_modules = [] for i, num_blocks in enumerate(self.stage_blocks): num_modules = num_blocks + 1 end_idx = start_idx + num_modules dilation = dilations[i] out_channels = 64 * 2**i if i < 4 else 512 vgg_layer = make_vgg_layer( self.in_channels, out_channels, num_blocks, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg, dilation=dilation, with_norm=with_norm, ceil_mode=ceil_mode) vgg_layers.extend(vgg_layer) self.in_channels = out_channels self.range_sub_modules.append([start_idx, end_idx]) start_idx = end_idx if not with_last_pool: vgg_layers.pop(-1) self.range_sub_modules[-1][1] -= 1 self.module_name = 'features' self.add_module(self.module_name, nn.Sequential(*vgg_layers)) if self.num_classes > 0: self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) def init_weights(self, pretrained=None): super().init_weights(pretrained) if pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, _BatchNorm): constant_init(m, 1) elif isinstance(m, nn.Linear): normal_init(m, std=0.01) def forward(self, x): outs = [] vgg_layers = getattr(self, self.module_name) for i in range(len(self.stage_blocks)): for j in range(*self.range_sub_modules[i]): vgg_layer = vgg_layers[j] x = vgg_layer(x) if i in self.out_indices: outs.append(x) if self.num_classes > 0: x = x.view(x.size(0), -1) x = self.classifier(x) outs.append(x) if len(outs) == 1: return outs[0] else: return tuple(outs) def _freeze_stages(self): vgg_layers = getattr(self, self.module_name) for i in range(self.frozen_stages): for j in range(*self.range_sub_modules[i]): m = vgg_layers[j] m.eval() for param in m.parameters(): param.requires_grad = False def train(self, mode=True): super().train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval()