--- title: Cloudseg emoji: πŸ“š colorFrom: blue colorTo: red sdk: gradio sdk_version: 4.40.0 app_file: app.py pinned: false license: apache-2.0 --- # Cloud Segmentation [![demo](https://img.shields.io/badge/πŸ€—HugginngFace-Spaces-orange)](https://huggingface.co/spaces/caixiaoshun/cloudseg) [![python](https://img.shields.io/badge/-Python_3.8_%7C_3.9_%7C_3.10-blue?logo=python&logoColor=white)](https://github.com/pre-commit/pre-commit) [![pytorch](https://img.shields.io/badge/PyTorch_2.0+-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/get-started/locally/) [![lightning](https://img.shields.io/badge/-Lightning_2.0+-792ee5?logo=pytorchlightning&logoColor=white)](https://pytorchlightning.ai/) [![hydra](https://img.shields.io/badge/Config-Hydra_1.3-89b8cd)](https://hydra.cc/) [![license](https://img.shields.io/badge/License-MIT-green.svg?labelColor=gray)](https://github.com/XavierJiezou/cloudseg#license) [![contributors](https://img.shields.io/github/contributors/XavierJiezou/cloudseg.svg)](https://github.com/XavierJiezou/cloudseg/graphs/contributors) [![Template](https://img.shields.io/badge/-Lightning--Hydra--Template-017F2F?style=flat&logo=github&labelColor=gray)](https://github.com/ashleve/lightning-hydra-template) [![Paper](http://img.shields.io/badge/paper-arxiv.1001.2234-B31B1B.svg)](https://www.nature.com/articles/nature14539) [![Conference](http://img.shields.io/badge/AnyConference-year-4b44ce.svg)](https://papers.nips.cc/paper/2020) ## Datasets ```bash cloudseg β”œβ”€β”€ src β”œβ”€β”€ configs β”œβ”€β”€ data β”‚ β”œβ”€β”€ hrcwhu β”‚ β”‚ β”œβ”€β”€ train.txt β”‚ β”‚ β”œβ”€β”€ test.txt β”‚ β”‚ β”œβ”€β”€ img_dir β”‚ β”‚ β”‚ β”œβ”€β”€ train β”‚ β”‚ β”‚ β”œβ”€β”€ test β”‚ β”‚ β”œβ”€β”€ ann_dir β”‚ β”‚ β”‚ β”œβ”€β”€ train β”‚ β”‚ β”‚ β”œβ”€β”€ test ``` ## Supported Methods - [UNet (MICCAI 2016)](configs/model/unet) - [CDNetv1 (TGRS 2019)](configs/model/cdnetv1) - [CDNetv2 (TGRS 2021)](configs/model/cdnetv2) - [DBNet (TGRS 2022)](configs/model/dbnet) - [HrCloudNet (JEI 2024)](configs/model/hrcloudnet) - [McdNet (International Journal of Applied Earth Observation and Geoinformation 2024)](configs/model/mcdnet) - [Scnn (ISPRS 2024)](configs/model/scnn) ## Installation ```bash git clone https://github.com/XavierJiezou/cloudseg.git cd cloudseg conda env create -f environment.yaml conda activate cloudseg ``` ## Usage **Train model with default configuration** ```bash # train on CPU python src/train.py trainer=cpu # train on GPU python src/train.py trainer=gpu ``` **Train model with chosen experiment configuration from [configs/experiment/](configs/experiment/)** ```bash python src/train.py experiment=experiment_name.yaml ``` **Tranin Example** ```bash python src/train.py experiment=hrcwhu_cdnetv1.yaml ``` **You can override any parameter from command line like this** ```bash python src/train.py trainer.max_epochs=20 data.batch_size=64 ``` **Visualization in wandb** ```bash python wand_vis.py --model-name model_name ``` **Example** ```bash python wand_vis.py --model-name cdnetv1 ```