import torch import gradio as gr from transformers import pipeline import tempfile from neon_tts_plugin_coqui import CoquiTTS from datetime import datetime import time import psutil from mtranslate import translate from gpuinfo import GPUInfo MODEL_NAME = "cahya/whisper-medium-id" # this always needs to stay in line 8 :D sorry for the hackiness whisper_models = { "Indonesian Whisper Tiny": { "name": "cahya/whisper-tiny-id", "pipe": None, }, } lang = "id" title = "Indonesian Whisperer" description = "Cross Language Speech to Speech (Indonesian/English to 25 other languages) using OpenAI Whisper and Coqui TTS" info = "This application uses [Indonesian Whisperer Medium](https://huggingface.co/cahya/whisper-medium-id) model" badge = "https://img.shields.io/badge/Powered%20by-Indonesian%20Whisperer-red" visitors = "https://visitor-badge.glitch.me/badge?page_id=cahya-hf-indonesian-whisperer" languages = { 'English': 'en', 'German': 'de', 'Spanish': 'es', 'French': 'fr', 'Portuguese': 'pt', 'Polish': 'pl', 'Dutch': 'nl', 'Swedish': 'sv', 'Italian': 'it', 'Finnish': 'fi', 'Ukrainian': 'uk', 'Greek': 'el', 'Czech': 'cs', 'Romanian': 'ro', 'Danish': 'da', 'Hungarian': 'hu', 'Croatian': 'hr', 'Bulgarian': 'bg', 'Lithuanian': 'lt', 'Slovak': 'sk', 'Latvian': 'lv', 'Slovenian': 'sl', 'Estonian': 'et', 'Maltese': 'mt' } device = 0 if torch.cuda.is_available() else "cpu" for model in whisper_models: whisper_models[model]["pipe"] = pipeline( task="automatic-speech-recognition", model=whisper_models[model]["name"], chunk_length_s=30, device=device, ) whisper_models[model]["pipe"].model.config.forced_decoder_ids = \ whisper_models[model]["pipe"].tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") def transcribe(pipe, microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text LANGUAGES = list(CoquiTTS.langs.keys()) default_lang = "en" coquiTTS = CoquiTTS() def process(language: str, model: str, audio_microphone: str, audio_file: str): language = languages[language] pipe = whisper_models[model]["pipe"] time_start = time.time() print(f"### {datetime.now()} TTS", language, audio_file) transcription = transcribe(pipe, audio_microphone, audio_file) print(f"### {datetime.now()} transcribed:", transcription) translation = translate(transcription, language, "id") # return output with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(translation, fp, speaker={"language": language}) time_end = time.time() time_diff = time_end - time_start memory = psutil.virtual_memory() gpu_utilization, gpu_memory = GPUInfo.gpu_usage() gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 system_info = f""" *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* *Processing time: {time_diff:.5} seconds.* *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.* """ print(f"### {datetime.now()} fp.name:", fp.name) return transcription, translation, fp.name, system_info with gr.Blocks() as blocks: gr.Markdown("