File size: 14,790 Bytes
733aa30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Data pre-processing: build vocabularies and binarize training data.
"""

import logging
import os
import shutil
import sys
from collections import Counter
from itertools import zip_longest
from multiprocessing import Pool

from fairseq import options, tasks, utils
from fairseq.binarizer import Binarizer
from fairseq.data import indexed_dataset
from fairseq.file_chunker_utils import find_offsets

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.preprocess")


def main(args):
    utils.import_user_module(args)

    os.makedirs(args.destdir, exist_ok=True)

    logger.addHandler(
        logging.FileHandler(
            filename=os.path.join(args.destdir, "preprocess.log"),
        )
    )
    logger.info(args)

    assert args.dataset_impl != "huffman", "preprocessing.py doesn't support Huffman yet, use HuffmanCodeBuilder directly."

    task = tasks.get_task(args.task)

    def train_path(lang):
        return "{}{}".format(args.trainpref, ("." + lang) if lang else "")

    def file_name(prefix, lang):
        fname = prefix
        if lang is not None:
            fname += ".{lang}".format(lang=lang)
        return fname

    def dest_path(prefix, lang):
        return os.path.join(args.destdir, file_name(prefix, lang))

    def dict_path(lang):
        return dest_path("dict", lang) + ".txt"

    def build_dictionary(filenames, src=False, tgt=False):
        assert src ^ tgt
        return task.build_dictionary(
            filenames,
            workers=args.workers,
            threshold=args.thresholdsrc if src else args.thresholdtgt,
            nwords=args.nwordssrc if src else args.nwordstgt,
            padding_factor=args.padding_factor,
        )

    target = not args.only_source

    if not args.srcdict and os.path.exists(dict_path(args.source_lang)):
        raise FileExistsError(dict_path(args.source_lang))
    if target and not args.tgtdict and os.path.exists(dict_path(args.target_lang)):
        raise FileExistsError(dict_path(args.target_lang))

    if args.joined_dictionary:
        assert (
            not args.srcdict or not args.tgtdict
        ), "cannot use both --srcdict and --tgtdict with --joined-dictionary"

        if args.srcdict:
            src_dict = task.load_dictionary(args.srcdict)
        elif args.tgtdict:
            src_dict = task.load_dictionary(args.tgtdict)
        else:
            assert (
                args.trainpref
            ), "--trainpref must be set if --srcdict is not specified"
            src_dict = build_dictionary(
                {train_path(lang) for lang in [args.source_lang, args.target_lang]},
                src=True,
            )
        tgt_dict = src_dict
    else:
        if args.srcdict:
            src_dict = task.load_dictionary(args.srcdict)
        else:
            assert (
                args.trainpref
            ), "--trainpref must be set if --srcdict is not specified"
            src_dict = build_dictionary([train_path(args.source_lang)], src=True)

        if target:
            if args.tgtdict:
                tgt_dict = task.load_dictionary(args.tgtdict)
            else:
                assert (
                    args.trainpref
                ), "--trainpref must be set if --tgtdict is not specified"
                tgt_dict = build_dictionary([train_path(args.target_lang)], tgt=True)
        else:
            tgt_dict = None

    src_dict.save(dict_path(args.source_lang))
    if target and tgt_dict is not None:
        tgt_dict.save(dict_path(args.target_lang))

    if args.dict_only:
        return

    def make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers):
        logger.info("[{}] Dictionary: {} types".format(lang, len(vocab)))
        n_seq_tok = [0, 0]
        replaced = Counter()

        def merge_result(worker_result):
            replaced.update(worker_result["replaced"])
            n_seq_tok[0] += worker_result["nseq"]
            n_seq_tok[1] += worker_result["ntok"]

        input_file = "{}{}".format(
            input_prefix, ("." + lang) if lang is not None else ""
        )
        offsets = find_offsets(input_file, num_workers)
        (first_chunk, *more_chunks) = zip(offsets, offsets[1:])
        pool = None
        if num_workers > 1:
            pool = Pool(processes=num_workers - 1)
            for worker_id, (start_offset, end_offset) in enumerate(
                more_chunks, start=1
            ):
                prefix = "{}{}".format(output_prefix, worker_id)
                pool.apply_async(
                    binarize,
                    (
                        args,
                        input_file,
                        vocab,
                        prefix,
                        lang,
                        start_offset,
                        end_offset,
                    ),
                    callback=merge_result,
                )
            pool.close()

        ds = indexed_dataset.make_builder(
            dataset_dest_file(args, output_prefix, lang, "bin"),
            impl=args.dataset_impl,
            vocab_size=len(vocab),
        )
        merge_result(
            Binarizer.binarize(
                input_file,
                vocab,
                lambda t: ds.add_item(t),
                offset=first_chunk[0],
                end=first_chunk[1],
            )
        )
        if num_workers > 1:
            pool.join()
            for worker_id in range(1, num_workers):
                prefix = "{}{}".format(output_prefix, worker_id)
                temp_file_path = dataset_dest_prefix(args, prefix, lang)
                ds.merge_file_(temp_file_path)
                os.remove(indexed_dataset.data_file_path(temp_file_path))
                os.remove(indexed_dataset.index_file_path(temp_file_path))

        ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx"))

        logger.info(
            "[{}] {}: {} sents, {} tokens, {:.3}% replaced by {}".format(
                lang,
                input_file,
                n_seq_tok[0],
                n_seq_tok[1],
                100 * sum(replaced.values()) / n_seq_tok[1],
                vocab.unk_word,
            )
        )

    def make_binary_alignment_dataset(input_prefix, output_prefix, num_workers):
        nseq = [0]

        def merge_result(worker_result):
            nseq[0] += worker_result["nseq"]

        input_file = input_prefix
        offsets = find_offsets(input_file, num_workers)
        (first_chunk, *more_chunks) = zip(offsets, offsets[1:])
        pool = None
        if num_workers > 1:
            pool = Pool(processes=num_workers - 1)
            for worker_id, (start_offset, end_offset) in enumerate(
                more_chunks, start=1
            ):
                prefix = "{}{}".format(output_prefix, worker_id)
                pool.apply_async(
                    binarize_alignments,
                    (
                        args,
                        input_file,
                        utils.parse_alignment,
                        prefix,
                        start_offset,
                        end_offset,
                    ),
                    callback=merge_result,
                )
            pool.close()

        ds = indexed_dataset.make_builder(
            dataset_dest_file(args, output_prefix, None, "bin"), impl=args.dataset_impl
        )

        merge_result(
            Binarizer.binarize_alignments(
                input_file,
                utils.parse_alignment,
                lambda t: ds.add_item(t),
                offset=first_chunk[0],
                end=first_chunk[1],
            )
        )
        if num_workers > 1:
            pool.join()
            for worker_id in range(1, num_workers):
                prefix = "{}{}".format(output_prefix, worker_id)
                temp_file_path = dataset_dest_prefix(args, prefix, None)
                ds.merge_file_(temp_file_path)
                os.remove(indexed_dataset.data_file_path(temp_file_path))
                os.remove(indexed_dataset.index_file_path(temp_file_path))

        ds.finalize(dataset_dest_file(args, output_prefix, None, "idx"))

        logger.info("[alignments] {}: parsed {} alignments".format(input_file, nseq[0]))

    def make_dataset(vocab, input_prefix, output_prefix, lang, num_workers=1):
        if args.dataset_impl == "raw":
            # Copy original text file to destination folder
            output_text_file = dest_path(
                output_prefix + ".{}-{}".format(args.source_lang, args.target_lang),
                lang,
            )
            shutil.copyfile(file_name(input_prefix, lang), output_text_file)
        else:
            make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers)

    def make_all(lang, vocab):
        if args.trainpref:
            make_dataset(vocab, args.trainpref, "train", lang, num_workers=args.workers)
        if args.validpref:
            for k, validpref in enumerate(args.validpref.split(",")):
                outprefix = "valid{}".format(k) if k > 0 else "valid"
                make_dataset(
                    vocab, validpref, outprefix, lang, num_workers=args.workers
                )
        if args.testpref:
            for k, testpref in enumerate(args.testpref.split(",")):
                outprefix = "test{}".format(k) if k > 0 else "test"
                make_dataset(vocab, testpref, outprefix, lang, num_workers=args.workers)

    def make_all_alignments():
        if args.trainpref and os.path.exists(args.trainpref + "." + args.align_suffix):
            make_binary_alignment_dataset(
                args.trainpref + "." + args.align_suffix,
                "train.align",
                num_workers=args.workers,
            )
        if args.validpref and os.path.exists(args.validpref + "." + args.align_suffix):
            make_binary_alignment_dataset(
                args.validpref + "." + args.align_suffix,
                "valid.align",
                num_workers=args.workers,
            )
        if args.testpref and os.path.exists(args.testpref + "." + args.align_suffix):
            make_binary_alignment_dataset(
                args.testpref + "." + args.align_suffix,
                "test.align",
                num_workers=args.workers,
            )

    make_all(args.source_lang, src_dict)
    if target:
        make_all(args.target_lang, tgt_dict)
    if args.align_suffix:
        make_all_alignments()

    logger.info("Wrote preprocessed data to {}".format(args.destdir))

    if args.alignfile:
        assert args.trainpref, "--trainpref must be set if --alignfile is specified"
        src_file_name = train_path(args.source_lang)
        tgt_file_name = train_path(args.target_lang)
        freq_map = {}
        with open(args.alignfile, "r", encoding="utf-8") as align_file:
            with open(src_file_name, "r", encoding="utf-8") as src_file:
                with open(tgt_file_name, "r", encoding="utf-8") as tgt_file:
                    for a, s, t in zip_longest(align_file, src_file, tgt_file):
                        si = src_dict.encode_line(s, add_if_not_exist=False)
                        ti = tgt_dict.encode_line(t, add_if_not_exist=False)
                        ai = list(map(lambda x: tuple(x.split("-")), a.split()))
                        for sai, tai in ai:
                            srcidx = si[int(sai)]
                            tgtidx = ti[int(tai)]
                            if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk():
                                assert srcidx != src_dict.pad()
                                assert srcidx != src_dict.eos()
                                assert tgtidx != tgt_dict.pad()
                                assert tgtidx != tgt_dict.eos()

                                if srcidx not in freq_map:
                                    freq_map[srcidx] = {}
                                if tgtidx not in freq_map[srcidx]:
                                    freq_map[srcidx][tgtidx] = 1
                                else:
                                    freq_map[srcidx][tgtidx] += 1

        align_dict = {}
        for srcidx in freq_map.keys():
            align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get)

        with open(
            os.path.join(
                args.destdir,
                "alignment.{}-{}.txt".format(args.source_lang, args.target_lang),
            ),
            "w",
            encoding="utf-8",
        ) as f:
            for k, v in align_dict.items():
                print("{} {}".format(src_dict[k], tgt_dict[v]), file=f)


def binarize(args, filename, vocab, output_prefix, lang, offset, end, append_eos=True):
    ds = indexed_dataset.make_builder(
        dataset_dest_file(args, output_prefix, lang, "bin"),
        impl=args.dataset_impl,
        vocab_size=len(vocab),
    )

    def consumer(tensor):
        ds.add_item(tensor)

    res = Binarizer.binarize(
        filename, vocab, consumer, append_eos=append_eos, offset=offset, end=end
    )
    ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx"))
    return res


def binarize_alignments(args, filename, parse_alignment, output_prefix, offset, end):
    ds = indexed_dataset.make_builder(
        dataset_dest_file(args, output_prefix, None, "bin"),
        impl=args.dataset_impl,
        vocab_size=None,
    )

    def consumer(tensor):
        ds.add_item(tensor)

    res = Binarizer.binarize_alignments(
        filename, parse_alignment, consumer, offset=offset, end=end
    )
    ds.finalize(dataset_dest_file(args, output_prefix, None, "idx"))
    return res


def dataset_dest_prefix(args, output_prefix, lang):
    base = "{}/{}".format(args.destdir, output_prefix)
    if lang is not None:
        lang_part = ".{}-{}.{}".format(args.source_lang, args.target_lang, lang)
    elif args.only_source:
        lang_part = ""
    else:
        lang_part = ".{}-{}".format(args.source_lang, args.target_lang)

    return "{}{}".format(base, lang_part)


def dataset_dest_file(args, output_prefix, lang, extension):
    base = dataset_dest_prefix(args, output_prefix, lang)
    return "{}.{}".format(base, extension)


def cli_main():
    parser = options.get_preprocessing_parser()
    args = parser.parse_args()
    main(args)


if __name__ == "__main__":
    cli_main()