import pandas as pd from model_handler import ModelHandler from config import LING_MINI_2_0 from .agent_common_utils import format_df_to_string def fetch_prompt_suggestions_agent(editor_content: str, style: str, kb_df: pd.DataFrame, short_outline_df: pd.DataFrame, long_outline_df: pd.DataFrame): """ Agent for fetching short prompt suggestions using LING_MINI_2_0. """ print("\n[Agent][fetch_prompt_suggestions_agent] === 推理类型:续写提示推荐 ===") try: # 1. Format context style_context = f"### 整体章程\n{style}\n\n" kb_context = format_df_to_string(kb_df, "知识库") short_outline_context = format_df_to_string(short_outline_df, "当前章节大纲") # 2. Build System Prompt system_prompt = ( "你是一个辅助写作的创意助手。请根据提供的故事背景和知识库,结合“互动”、“冲突”、“发展”、“对话”等动作,生成3个简短的续写提示短语。\n" "要求:\n" "1. 短语简洁明了,例如:“和Alpha争吵”、“探索废弃的地铁站”、“回忆起旧照片的往事”。\n" "2. 尽量使用知识库中的专有名词。\n" "3. 请严格遵守以下格式:输出3个短语,用 `|` 分隔。不要包含其他内容。\n" "例如:和Alpha争吵|探索废弃的地铁站|回忆起旧照片的往事" ) # 3. Build User Prompt full_context = style_context + kb_context + short_outline_context user_prompt = ( f"### 背景设定\n{full_context}\n" f"### 当前已写内容 (末尾部分)\n{editor_content[-500:]}\n\n" # Only need a little context f"### 任务\n生成3个续写提示。" ) # 4. Call LLM model_handler = ModelHandler() response_generator = model_handler.generate_code( system_prompt=system_prompt, user_prompt=user_prompt, model_choice=LING_MINI_2_0 ) full_response = "".join(chunk for chunk in response_generator) print("【收到的建议】", full_response) suggestions = full_response.split("|") # Ensure 3 suggestions suggestions += ["继续推进剧情"] * (3 - len(suggestions)) return suggestions[0].strip(), suggestions[1].strip(), suggestions[2].strip() except Exception as e: print(f"[Agent] Error fetching prompt suggestions: {e}") return "生成失败", "生成失败", "生成失败"