Spaces:
Running
Running
GitHub Action
commited on
Commit
·
1b21038
1
Parent(s):
7519849
Sync ling-space changes from GitHub commit 9773e54
Browse files- app.py +2 -71
- config.py +25 -23
- i18n/common.py +4 -0
- i18n/model_config.py +36 -0
- i18n/tab_chat.py +4 -0
- model_handler.py +1 -1
- static/app.html +4 -3
- tab_chat.py +161 -25
- tab_code.py +6 -2
- ui_components/model_selector.py +42 -13
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from datetime import datetime
|
|
| 5 |
import pandas as pd
|
| 6 |
from i18n import get_text
|
| 7 |
from model_handler import ModelHandler
|
| 8 |
-
from tab_chat import create_chat_tab
|
| 9 |
from tab_chat import update_language as update_chat_language
|
| 10 |
from tab_code import create_code_tab
|
| 11 |
from tab_code import update_language as update_code_language
|
|
@@ -20,75 +20,6 @@ logging.basicConfig(
|
|
| 20 |
)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
def get_history_df_from_app(history):
|
| 25 |
-
if not history:
|
| 26 |
-
return pd.DataFrame(
|
| 27 |
-
{"ID": pd.Series(dtype="str"), "对话": pd.Series(dtype="str")}
|
| 28 |
-
)
|
| 29 |
-
df = pd.DataFrame(history)
|
| 30 |
-
if "id" in df.columns and "title" in df.columns:
|
| 31 |
-
return df[["id", "title"]].rename(columns={"id": "ID", "对话": "对话"})
|
| 32 |
-
return pd.DataFrame({"ID": pd.Series(dtype="str"), "对话": pd.Series(dtype="str")})
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def on_app_load(request: gr.Request, history, conv_id, current_lang_state):
|
| 36 |
-
"""
|
| 37 |
-
Handles the application's initial state on load.
|
| 38 |
-
- Determines language from URL parameter.
|
| 39 |
-
- Loads conversation history or creates a new one.
|
| 40 |
-
"""
|
| 41 |
-
# --- Language Detection ---
|
| 42 |
-
query_params = dict(request.query_params)
|
| 43 |
-
url_lang = query_params.get("lang")
|
| 44 |
-
|
| 45 |
-
updated_lang = current_lang_state # Start with the default
|
| 46 |
-
if url_lang and url_lang in ["en", "zh"]:
|
| 47 |
-
updated_lang = url_lang
|
| 48 |
-
|
| 49 |
-
# --- History Loading Logic ---
|
| 50 |
-
if not history:
|
| 51 |
-
# First time ever, create a new conversation
|
| 52 |
-
conv_id = str(uuid.uuid4())
|
| 53 |
-
new_convo_title = get_text("chat_new_conversation_title", updated_lang)
|
| 54 |
-
new_convo = {
|
| 55 |
-
"id": conv_id,
|
| 56 |
-
"title": new_convo_title,
|
| 57 |
-
"messages": [],
|
| 58 |
-
"timestamp": datetime.now().isoformat(),
|
| 59 |
-
}
|
| 60 |
-
history = [new_convo]
|
| 61 |
-
return (
|
| 62 |
-
conv_id,
|
| 63 |
-
history,
|
| 64 |
-
gr.update(value=get_history_df_from_app(history)),
|
| 65 |
-
[],
|
| 66 |
-
updated_lang,
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
if conv_id and any(c["id"] == conv_id for c in history):
|
| 70 |
-
# Valid last session, load it
|
| 71 |
-
for convo in history:
|
| 72 |
-
if convo["id"] == conv_id:
|
| 73 |
-
return (
|
| 74 |
-
conv_id,
|
| 75 |
-
history,
|
| 76 |
-
gr.update(value=get_history_df_from_app(history)),
|
| 77 |
-
convo["messages"],
|
| 78 |
-
updated_lang,
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
# Fallback to most recent conversation
|
| 82 |
-
most_recent_convo = history[0]
|
| 83 |
-
return (
|
| 84 |
-
most_recent_convo["id"],
|
| 85 |
-
history,
|
| 86 |
-
gr.update(value=get_history_df_from_app(history)),
|
| 87 |
-
most_recent_convo["messages"],
|
| 88 |
-
updated_lang,
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
CSS = """
|
| 93 |
|
| 94 |
#chatbot {
|
|
@@ -161,7 +92,7 @@ if __name__ == "__main__":
|
|
| 161 |
|
| 162 |
chat_tab.select(
|
| 163 |
fn=None,
|
| 164 |
-
js="() => {window.dispatchEvent(new CustomEvent('tabSelect.chat'));
|
| 165 |
)
|
| 166 |
|
| 167 |
# --- Code Tab ---
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
from i18n import get_text
|
| 7 |
from model_handler import ModelHandler
|
| 8 |
+
from tab_chat import create_chat_tab, get_history_df, on_app_load
|
| 9 |
from tab_chat import update_language as update_chat_language
|
| 10 |
from tab_code import create_code_tab
|
| 11 |
from tab_code import update_language as update_code_language
|
|
|
|
| 20 |
)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
CSS = """
|
| 24 |
|
| 25 |
#chatbot {
|
|
|
|
| 92 |
|
| 93 |
chat_tab.select(
|
| 94 |
fn=None,
|
| 95 |
+
js="() => {window.dispatchEvent(new CustomEvent('tabSelect.chat')); return null;}",
|
| 96 |
)
|
| 97 |
|
| 98 |
# --- Code Tab ---
|
config.py
CHANGED
|
@@ -7,6 +7,7 @@ API keys, and system prompts for different functionalities.
|
|
| 7 |
|
| 8 |
import os
|
| 9 |
from dotenv import load_dotenv
|
|
|
|
| 10 |
|
| 11 |
# Load environment variables from .secrets file
|
| 12 |
load_dotenv(dotenv_path='.secrets')
|
|
@@ -38,50 +39,51 @@ RING_MINI_2_0 = "ring-mini-2.0"
|
|
| 38 |
|
| 39 |
|
| 40 |
CHAT_MODEL_SPECS = {
|
| 41 |
-
LING_MINI_2_0: {
|
| 42 |
-
"provider": "openai_compatible",
|
| 43 |
-
"model_id": "inclusionai/ling-mini-2.0",
|
| 44 |
-
"display_name": "🦉 Ling-mini-2.0",
|
| 45 |
-
"description": "轻量级对话模型,专为消费级硬件的高效运行而优化,是移动端或本地化部署场景的理想选择。",
|
| 46 |
-
"url": "https://huggingface.co/inclusionai"
|
| 47 |
-
},
|
| 48 |
LING_1T: {
|
| 49 |
"provider": "openai_compatible",
|
| 50 |
"model_id": "inclusionai/ling-1t",
|
| 51 |
"display_name": "🦉 Ling-1T",
|
| 52 |
-
"description": "
|
| 53 |
-
"url": "https://huggingface.co/
|
| 54 |
-
},
|
| 55 |
-
LING_FLASH_2_0: {
|
| 56 |
-
"provider": "openai_compatible",
|
| 57 |
-
"model_id": "inclusionai/ling-flash-2.0",
|
| 58 |
-
"display_name": "🦉 Ling-flash-2.0",
|
| 59 |
-
"description": "高性能十亿参数模型,针对需要高速响应和复杂指令遵循的场景进行了优化。",
|
| 60 |
-
"url": "https://huggingface.co/inclusionai"
|
| 61 |
},
|
| 62 |
RING_1T: {
|
| 63 |
"provider": "openai_compatible",
|
| 64 |
"model_id": "inclusionai/ring-1t",
|
| 65 |
"display_name": "💍️ Ring-1T",
|
| 66 |
-
"description": "
|
| 67 |
-
"url": "https://huggingface.co/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
},
|
| 69 |
RING_FLASH_2_0: {
|
| 70 |
"provider": "openai_compatible",
|
| 71 |
"model_id": "inclusionai/ring-flash-2.0",
|
| 72 |
"display_name": "💍️ Ring-flash-2.0",
|
| 73 |
-
"description": "
|
| 74 |
-
"url": "https://huggingface.co/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
},
|
| 76 |
RING_MINI_2_0: {
|
| 77 |
"provider": "openai_compatible",
|
| 78 |
"model_id": "inclusionai/ring-mini-2.0",
|
| 79 |
"display_name": "💍️ Ring-mini-2.0",
|
| 80 |
-
"description": "
|
| 81 |
-
"url": "https://huggingface.co/
|
| 82 |
}
|
| 83 |
}
|
| 84 |
|
|
|
|
| 85 |
# --- Code Framework Specifications ---
|
| 86 |
|
| 87 |
# Constants for easy referencing of code frameworks
|
|
@@ -140,4 +142,4 @@ def get_model_display_name(model_constant: str) -> str:
|
|
| 140 |
Retrieves the display name for a given model constant.
|
| 141 |
This is what's shown in the UI.
|
| 142 |
"""
|
| 143 |
-
return CHAT_MODEL_SPECS.get(model_constant, {}).get("display_name", model_constant)
|
|
|
|
| 7 |
|
| 8 |
import os
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
+
from i18n.model_config import model_descriptions
|
| 11 |
|
| 12 |
# Load environment variables from .secrets file
|
| 13 |
load_dotenv(dotenv_path='.secrets')
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
CHAT_MODEL_SPECS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
LING_1T: {
|
| 43 |
"provider": "openai_compatible",
|
| 44 |
"model_id": "inclusionai/ling-1t",
|
| 45 |
"display_name": "🦉 Ling-1T",
|
| 46 |
+
"description": model_descriptions["ling-1t-desc"],
|
| 47 |
+
"url": "https://huggingface.co/inclusionAI/Ling-1T"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
},
|
| 49 |
RING_1T: {
|
| 50 |
"provider": "openai_compatible",
|
| 51 |
"model_id": "inclusionai/ring-1t",
|
| 52 |
"display_name": "💍️ Ring-1T",
|
| 53 |
+
"description": model_descriptions["ring-1t-desc"],
|
| 54 |
+
"url": "https://huggingface.co/inclusionAI/Ring-1T"
|
| 55 |
+
},
|
| 56 |
+
LING_FLASH_2_0: {
|
| 57 |
+
"provider": "openai_compatible",
|
| 58 |
+
"model_id": "inclusionai/ling-flash-2.0",
|
| 59 |
+
"display_name": "🦉 Ling-flash-2.0",
|
| 60 |
+
"description": model_descriptions["ling-flash-2.0-desc"],
|
| 61 |
+
"url": "https://huggingface.co/inclusionAI/Ling-flash-2.0"
|
| 62 |
},
|
| 63 |
RING_FLASH_2_0: {
|
| 64 |
"provider": "openai_compatible",
|
| 65 |
"model_id": "inclusionai/ring-flash-2.0",
|
| 66 |
"display_name": "💍️ Ring-flash-2.0",
|
| 67 |
+
"description": model_descriptions["ring-flash-2.0-desc"],
|
| 68 |
+
"url": "https://huggingface.co/inclusionAI/Ring-flash-2.0"
|
| 69 |
+
},
|
| 70 |
+
LING_MINI_2_0: {
|
| 71 |
+
"provider": "openai_compatible",
|
| 72 |
+
"model_id": "inclusionai/ling-mini-2.0",
|
| 73 |
+
"display_name": "🦉 Ling-mini-2.0",
|
| 74 |
+
"description": model_descriptions["ling-mini-2.0-desc"],
|
| 75 |
+
"url": "https://huggingface.co/inclusionAI/Ling-mini-2.0"
|
| 76 |
},
|
| 77 |
RING_MINI_2_0: {
|
| 78 |
"provider": "openai_compatible",
|
| 79 |
"model_id": "inclusionai/ring-mini-2.0",
|
| 80 |
"display_name": "💍️ Ring-mini-2.0",
|
| 81 |
+
"description": model_descriptions["ring-mini-2.0-desc"],
|
| 82 |
+
"url": "https://huggingface.co/inclusionAI/Ring-mini-2.0"
|
| 83 |
}
|
| 84 |
}
|
| 85 |
|
| 86 |
+
|
| 87 |
# --- Code Framework Specifications ---
|
| 88 |
|
| 89 |
# Constants for easy referencing of code frameworks
|
|
|
|
| 142 |
Retrieves the display name for a given model constant.
|
| 143 |
This is what's shown in the UI.
|
| 144 |
"""
|
| 145 |
+
return CHAT_MODEL_SPECS.get(model_constant, {}).get("display_name", model_constant)
|
i18n/common.py
CHANGED
|
@@ -21,6 +21,10 @@ ui_translations = {
|
|
| 21 |
"new_conversation_title": {
|
| 22 |
"en": "(New Conversation)",
|
| 23 |
"zh": "(新对话)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
}
|
| 25 |
}
|
| 26 |
|
|
|
|
| 21 |
"new_conversation_title": {
|
| 22 |
"en": "(New Conversation)",
|
| 23 |
"zh": "(新对话)"
|
| 24 |
+
},
|
| 25 |
+
"model_selector_label": {
|
| 26 |
+
"en": "Select Model",
|
| 27 |
+
"zh": "模型选择"
|
| 28 |
}
|
| 29 |
}
|
| 30 |
|
i18n/model_config.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ling-space/i18n/model_config.py
|
| 2 |
+
|
| 3 |
+
# Constants for easy referencing of models (these are still needed for config.py's CHAT_MODEL_SPECS keys)
|
| 4 |
+
LING_MINI_2_0 = "ling-mini-2.0"
|
| 5 |
+
LING_1T = "ling-1t"
|
| 6 |
+
LING_FLASH_2_0 = "ling-flash-2.0"
|
| 7 |
+
RING_1T = "ring-1t"
|
| 8 |
+
RING_FLASH_2_0 = "ring-flash-2.0"
|
| 9 |
+
RING_MINI_2_0 = "ring-mini-2.0"
|
| 10 |
+
|
| 11 |
+
model_descriptions = {
|
| 12 |
+
"ling-1t-desc": {
|
| 13 |
+
"zh": "万亿参数的旗舰级非“思考”模型,为通用复杂推理任务和人机协同智能而设计。擅长高效推理、代码生成、软件开发、竞赛级数学等。",
|
| 14 |
+
"en": "A trillion-parameter flagship non-\"thinking\" model designed for general-purpose complex reasoning and collaborative human-AI intelligence. Excels in efficient reasoning, code generation, software development, and competition-level mathematics."
|
| 15 |
+
},
|
| 16 |
+
"ring-1t-desc": {
|
| 17 |
+
"zh": "万亿参数的“思考”模型,专为复杂推理任务深度优化。在数学竞赛、代码生成、逻辑推理、医疗保健和创意写作等领域表现出色。",
|
| 18 |
+
"en": "A trillion-parameter \"thinking\" model, deeply optimized for complex reasoning tasks. It shows strong performance in math competitions, code generation, logical reasoning, healthcare, and creative writing."
|
| 19 |
+
},
|
| 20 |
+
"ling-flash-2.0-desc": {
|
| 21 |
+
"zh": "高性能通用语言模型,专注于推理和创意应用。在复杂推理、代码生成、前端开发和创意任务方面表现出色。",
|
| 22 |
+
"en": "A general-purpose language model focusing on reasoning and creative applications. It is strong in complex reasoning, code generation, frontend development, and creative tasks."
|
| 23 |
+
},
|
| 24 |
+
"ring-flash-2.0-desc": {
|
| 25 |
+
"zh": "高性能“思考”模型,为复杂推理深度优化。在数学竞赛、代码生成、逻辑推理、科学和医学推理及创意写作方面表现领先。",
|
| 26 |
+
"en": "A high-performance \"thinking\" model, deeply optimized for complex reasoning. It exhibits leading performance in math competitions, code generation, logical reasoning, scientific and medical reasoning, and creative writing."
|
| 27 |
+
},
|
| 28 |
+
"ling-mini-2.0-desc": {
|
| 29 |
+
"zh": "紧凑而强大的 MoE 模型,是 MoE 研究和小型 LLM 应用的理想起点。在编码、数学和知识密集型任务中表现出强大的通用和专业推理能力。",
|
| 30 |
+
"en": "A compact yet powerful MoE-based large language model, ideal for MoE research and small-size LLM applications. It demonstrates strong general and professional reasoning in coding, mathematics, and knowledge-intensive tasks."
|
| 31 |
+
},
|
| 32 |
+
"ring-mini-2.0-desc": {
|
| 33 |
+
"zh": "为推理而优化的高性能、面向推理的 MoE 模型。提供全面的推理能力,尤其擅长逻辑推理、代码生成和数学任务。",
|
| 34 |
+
"en": "A high-performance, inference-oriented MoE model optimized for reasoning. It offers comprehensive reasoning capabilities, particularly excelling in logical reasoning, code generation, and mathematical tasks."
|
| 35 |
+
}
|
| 36 |
+
}
|
i18n/tab_chat.py
CHANGED
|
@@ -15,6 +15,10 @@ ui_translations = {
|
|
| 15 |
"en": "History",
|
| 16 |
"zh": "对话记录"
|
| 17 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"chat_chatbot_placeholder": {
|
| 19 |
"en": "Enter message...",
|
| 20 |
"zh": "输入消息..."
|
|
|
|
| 15 |
"en": "History",
|
| 16 |
"zh": "对话记录"
|
| 17 |
},
|
| 18 |
+
"chat_history_summary_header": {
|
| 19 |
+
"en": "Summary",
|
| 20 |
+
"zh": "内容摘要"
|
| 21 |
+
},
|
| 22 |
"chat_chatbot_placeholder": {
|
| 23 |
"en": "Enter message...",
|
| 24 |
"zh": "输入消息..."
|
model_handler.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from abc import ABC, abstractmethod
|
| 2 |
import httpx
|
| 3 |
import json
|
| 4 |
-
from config import CHAT_MODEL_SPECS, OPEN_AI_KEY, OPEN_AI_ENTRYPOINT, OPEN_AI_PROVIDER
|
| 5 |
|
| 6 |
class ModelProvider(ABC):
|
| 7 |
"""
|
|
|
|
| 1 |
from abc import ABC, abstractmethod
|
| 2 |
import httpx
|
| 3 |
import json
|
| 4 |
+
from config import CHAT_MODEL_SPECS, OPEN_AI_KEY, OPEN_AI_ENTRYPOINT, OPEN_AI_PROVIDER
|
| 5 |
|
| 6 |
class ModelProvider(ABC):
|
| 7 |
"""
|
static/app.html
CHANGED
|
@@ -77,11 +77,12 @@
|
|
| 77 |
// use toastify
|
| 78 |
window.Toastify({
|
| 79 |
text: args.join(' '),
|
| 80 |
-
duration:
|
| 81 |
-
gravity: "
|
| 82 |
position: "right",
|
| 83 |
style: {
|
| 84 |
-
background: "green"
|
|
|
|
| 85 |
}
|
| 86 |
}).showToast();
|
| 87 |
console.info("TOAST_INFO", ...args);
|
|
|
|
| 77 |
// use toastify
|
| 78 |
window.Toastify({
|
| 79 |
text: args.join(' '),
|
| 80 |
+
duration: 2000,
|
| 81 |
+
gravity: "bottom",
|
| 82 |
position: "right",
|
| 83 |
style: {
|
| 84 |
+
background: "green",
|
| 85 |
+
fontSize: "0.8em"
|
| 86 |
}
|
| 87 |
}).showToast();
|
| 88 |
console.info("TOAST_INFO", ...args);
|
tab_chat.py
CHANGED
|
@@ -2,22 +2,136 @@ import gradio as gr
|
|
| 2 |
import uuid
|
| 3 |
from datetime import datetime
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
from model_handler import ModelHandler
|
| 6 |
from config import CHAT_MODEL_SPECS, LING_1T
|
| 7 |
from recommand_config import RECOMMENDED_INPUTS
|
| 8 |
from ui_components.model_selector import create_model_selector
|
| 9 |
from i18n import get_text
|
| 10 |
|
| 11 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
if not history:
|
| 13 |
# Provide explicit column names for an empty DataFrame
|
| 14 |
-
return pd.DataFrame({'ID': pd.Series(dtype='str'), '
|
|
|
|
| 15 |
df = pd.DataFrame(history)
|
|
|
|
| 16 |
# Ensure columns exist before renaming
|
| 17 |
if 'id' in df.columns and 'title' in df.columns:
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
else:
|
| 20 |
-
return pd.DataFrame({'ID': pd.Series(dtype='str'), '
|
| 21 |
|
| 22 |
|
| 23 |
def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
@@ -31,37 +145,50 @@ def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 31 |
current_convo = next((c for c in history if c["id"] == current_conv_id), None) if history else None
|
| 32 |
|
| 33 |
if current_convo and not current_convo.get("messages", []):
|
| 34 |
-
return current_conv_id, history, [], gr.update(value=get_history_df(history))
|
| 35 |
|
| 36 |
conv_id = str(uuid.uuid4())
|
| 37 |
new_convo_title = get_text('chat_new_conversation_title', lang)
|
| 38 |
new_convo = {
|
| 39 |
"id": conv_id, "title": new_convo_title,
|
| 40 |
-
"messages": [], "timestamp": datetime.now().isoformat()
|
|
|
|
|
|
|
|
|
|
| 41 |
}
|
| 42 |
updated_history = [new_convo] + (history or [])
|
| 43 |
-
return conv_id, updated_history, [], gr.update(value=get_history_df(updated_history))
|
| 44 |
|
| 45 |
def load_conversation_from_df(df: pd.DataFrame, evt: gr.SelectData, history, lang):
|
| 46 |
if evt.index is None or len(df) == 0:
|
| 47 |
-
return None, []
|
|
|
|
| 48 |
selected_id = df.iloc[evt.index[0]]['ID']
|
| 49 |
-
for
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
new_id, _, new_msgs, _ = handle_new_chat(history, None, lang)
|
| 53 |
-
return new_id, new_msgs
|
| 54 |
|
| 55 |
with gr.Row(equal_height=False, elem_id="indicator-chat-tab"):
|
| 56 |
with gr.Column(scale=1):
|
| 57 |
new_chat_btn = gr.Button(get_text('chat_new_chat_button', initial_lang))
|
| 58 |
history_df = gr.DataFrame(
|
| 59 |
-
value=get_history_df(conversation_store.value),
|
| 60 |
headers=["ID", get_text('chat_history_dataframe_header', initial_lang)],
|
| 61 |
datatype=["str", "str"],
|
| 62 |
interactive=False,
|
| 63 |
visible=True,
|
| 64 |
-
column_widths=["0%", "
|
| 65 |
)
|
| 66 |
|
| 67 |
with gr.Column(scale=4):
|
|
@@ -81,7 +208,9 @@ def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 81 |
with gr.Column(scale=1):
|
| 82 |
model_dropdown, model_description_markdown = create_model_selector(
|
| 83 |
model_specs=CHAT_MODEL_SPECS,
|
| 84 |
-
default_model_constant=LING_1T
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
system_prompt_textbox = gr.Textbox(label=get_text('chat_system_prompt_label', initial_lang), lines=5, placeholder=get_text('chat_system_prompt_placeholder', initial_lang))
|
|
@@ -114,21 +243,28 @@ def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 114 |
for history_update in response_generator:
|
| 115 |
yield history_update
|
| 116 |
|
| 117 |
-
def on_chat_stream_complete(conv_id, history, final_chat_history, lang):
|
| 118 |
current_convo = next((c for c in history if c["id"] == conv_id), None)
|
| 119 |
if not current_convo:
|
| 120 |
return history, gr.update()
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
current_convo["messages"] = final_chat_history
|
| 128 |
current_convo["timestamp"] = datetime.now().isoformat()
|
| 129 |
|
| 130 |
history = sorted([c for c in history if c["id"] != conv_id] + [current_convo], key=lambda x: x["timestamp"], reverse=True)
|
| 131 |
-
return history, gr.update(value=get_history_df(history))
|
| 132 |
|
| 133 |
# Store all components that need i18n updates
|
| 134 |
components = {
|
|
@@ -149,7 +285,7 @@ def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 149 |
}
|
| 150 |
|
| 151 |
# Wire event handlers
|
| 152 |
-
recommended_dataset.select(on_select_recommendation, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, model_dropdown, system_prompt_textbox, temperature_slider, textbox, history_df, chatbot], show_progress="
|
| 153 |
|
| 154 |
submit_btn.click(
|
| 155 |
chat_stream,
|
|
@@ -157,7 +293,7 @@ def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 157 |
[chatbot]
|
| 158 |
).then(
|
| 159 |
on_chat_stream_complete,
|
| 160 |
-
[current_conversation_id, conversation_store, chatbot, current_lang_state],
|
| 161 |
[conversation_store, history_df]
|
| 162 |
)
|
| 163 |
textbox.submit(
|
|
@@ -166,12 +302,12 @@ def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 166 |
[chatbot]
|
| 167 |
).then(
|
| 168 |
on_chat_stream_complete,
|
| 169 |
-
[current_conversation_id, conversation_store, chatbot, current_lang_state],
|
| 170 |
[conversation_store, history_df]
|
| 171 |
)
|
| 172 |
|
| 173 |
new_chat_btn.click(handle_new_chat, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, chatbot, history_df])
|
| 174 |
-
history_df.select(load_conversation_from_df, inputs=[history_df, conversation_store, current_lang_state], outputs=[current_conversation_id, chatbot])
|
| 175 |
|
| 176 |
return components
|
| 177 |
|
|
|
|
| 2 |
import uuid
|
| 3 |
from datetime import datetime
|
| 4 |
import pandas as pd
|
| 5 |
+
import re
|
| 6 |
from model_handler import ModelHandler
|
| 7 |
from config import CHAT_MODEL_SPECS, LING_1T
|
| 8 |
from recommand_config import RECOMMENDED_INPUTS
|
| 9 |
from ui_components.model_selector import create_model_selector
|
| 10 |
from i18n import get_text
|
| 11 |
|
| 12 |
+
def on_app_load(request: gr.Request, history, conv_id, current_lang_state):
|
| 13 |
+
"""
|
| 14 |
+
Handles the application's initial state on load.
|
| 15 |
+
- Determines language from URL parameter.
|
| 16 |
+
- Loads conversation history or creates a new one.
|
| 17 |
+
"""
|
| 18 |
+
# --- Language Detection ---
|
| 19 |
+
query_params = dict(request.query_params)
|
| 20 |
+
url_lang = query_params.get("lang")
|
| 21 |
+
|
| 22 |
+
updated_lang = current_lang_state # Start with the default
|
| 23 |
+
if url_lang and url_lang in ["en", "zh"]:
|
| 24 |
+
updated_lang = url_lang
|
| 25 |
+
|
| 26 |
+
# --- History Loading Logic ---
|
| 27 |
+
if not history:
|
| 28 |
+
# First time ever, create a new conversation
|
| 29 |
+
conv_id = str(uuid.uuid4())
|
| 30 |
+
new_convo_title = get_text("chat_new_conversation_title", updated_lang)
|
| 31 |
+
new_convo = {
|
| 32 |
+
"id": conv_id,
|
| 33 |
+
"title": new_convo_title,
|
| 34 |
+
"messages": [],
|
| 35 |
+
"timestamp": datetime.now().isoformat(),
|
| 36 |
+
"system_prompt": "",
|
| 37 |
+
"model": CHAT_MODEL_SPECS[LING_1T]["display_name"],
|
| 38 |
+
"temperature": 0.7
|
| 39 |
+
}
|
| 40 |
+
history = [new_convo]
|
| 41 |
+
return (
|
| 42 |
+
conv_id,
|
| 43 |
+
history,
|
| 44 |
+
gr.update(value=get_history_df(history, updated_lang)),
|
| 45 |
+
[],
|
| 46 |
+
updated_lang,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
if conv_id and any(c["id"] == conv_id for c in history):
|
| 50 |
+
# Valid last session, load it
|
| 51 |
+
for convo in history:
|
| 52 |
+
if convo["id"] == conv_id:
|
| 53 |
+
return (
|
| 54 |
+
conv_id,
|
| 55 |
+
history,
|
| 56 |
+
gr.update(value=get_history_df(history, updated_lang)),
|
| 57 |
+
convo["messages"],
|
| 58 |
+
updated_lang,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Fallback to most recent conversation
|
| 62 |
+
most_recent_convo = history[0]
|
| 63 |
+
return (
|
| 64 |
+
most_recent_convo["id"],
|
| 65 |
+
history,
|
| 66 |
+
gr.update(value=get_history_df(history, updated_lang)),
|
| 67 |
+
most_recent_convo["messages"],
|
| 68 |
+
updated_lang,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def generate_conversation_title(messages, system_prompt):
|
| 73 |
+
"""
|
| 74 |
+
Generates a conversation title based on a heuristic, defensively handling
|
| 75 |
+
multiple possible message formats.
|
| 76 |
+
1. Tries to use the first user query.
|
| 77 |
+
2. Falls back to the system prompt.
|
| 78 |
+
3. Falls back to the current time.
|
| 79 |
+
"""
|
| 80 |
+
first_query = None
|
| 81 |
+
|
| 82 |
+
# Rule 1: Try to extract the first user query from various possible formats
|
| 83 |
+
if messages:
|
| 84 |
+
first_message = messages[0]
|
| 85 |
+
# Case 1: List[List[str]] -> [['user', 'assistant'], ...]
|
| 86 |
+
if isinstance(first_message, (list, tuple)) and len(first_message) > 0:
|
| 87 |
+
first_query = first_message[0]
|
| 88 |
+
# Case 2: List[Dict] (OpenAI format or others)
|
| 89 |
+
elif isinstance(first_message, dict):
|
| 90 |
+
if first_message.get("role") == "user":
|
| 91 |
+
first_query = first_message.get("content")
|
| 92 |
+
elif "text" in first_message: # Fallback for other observed formats
|
| 93 |
+
first_query = first_message["text"]
|
| 94 |
+
|
| 95 |
+
if first_query and isinstance(first_query, str):
|
| 96 |
+
# Split by common Chinese and English punctuation and whitespace
|
| 97 |
+
delimiters = r"[,。?!,?!.\s]+"
|
| 98 |
+
segments = re.split(delimiters, first_query)
|
| 99 |
+
|
| 100 |
+
title = ""
|
| 101 |
+
for seg in segments:
|
| 102 |
+
if seg:
|
| 103 |
+
title += seg
|
| 104 |
+
if len(title) > 3:
|
| 105 |
+
return title[:50] # Limit title length
|
| 106 |
+
if title:
|
| 107 |
+
return title[:50]
|
| 108 |
+
|
| 109 |
+
# Rule 2: Use the system prompt
|
| 110 |
+
if system_prompt:
|
| 111 |
+
return system_prompt[:32]
|
| 112 |
+
|
| 113 |
+
# Rule 3: Use the current time
|
| 114 |
+
return datetime.now().strftime("%H:%M")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def get_history_df(history, lang: str):
|
| 118 |
+
"""
|
| 119 |
+
Generates a language-aware DataFrame for the conversation history.
|
| 120 |
+
"""
|
| 121 |
if not history:
|
| 122 |
# Provide explicit column names for an empty DataFrame
|
| 123 |
+
return pd.DataFrame({'ID': pd.Series(dtype='str'), get_text('chat_history_dataframe_header', lang): pd.Series(dtype='str')})
|
| 124 |
+
|
| 125 |
df = pd.DataFrame(history)
|
| 126 |
+
|
| 127 |
# Ensure columns exist before renaming
|
| 128 |
if 'id' in df.columns and 'title' in df.columns:
|
| 129 |
+
header_text = get_text('chat_history_dataframe_header', lang)
|
| 130 |
+
# Ensure title is a string
|
| 131 |
+
df['title'] = df['title'].astype(str)
|
| 132 |
+
return df[['id', 'title']].rename(columns={'id': 'ID', 'title': header_text})
|
| 133 |
else:
|
| 134 |
+
return pd.DataFrame({'ID': pd.Series(dtype='str'), get_text('chat_history_dataframe_header', lang): pd.Series(dtype='str')})
|
| 135 |
|
| 136 |
|
| 137 |
def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
|
|
|
|
| 145 |
current_convo = next((c for c in history if c["id"] == current_conv_id), None) if history else None
|
| 146 |
|
| 147 |
if current_convo and not current_convo.get("messages", []):
|
| 148 |
+
return current_conv_id, history, [], gr.update(value=get_history_df(history, lang))
|
| 149 |
|
| 150 |
conv_id = str(uuid.uuid4())
|
| 151 |
new_convo_title = get_text('chat_new_conversation_title', lang)
|
| 152 |
new_convo = {
|
| 153 |
"id": conv_id, "title": new_convo_title,
|
| 154 |
+
"messages": [], "timestamp": datetime.now().isoformat(),
|
| 155 |
+
"system_prompt": "",
|
| 156 |
+
"model": CHAT_MODEL_SPECS[LING_1T]["display_name"],
|
| 157 |
+
"temperature": 0.7
|
| 158 |
}
|
| 159 |
updated_history = [new_convo] + (history or [])
|
| 160 |
+
return conv_id, updated_history, [], gr.update(value=get_history_df(updated_history, lang))
|
| 161 |
|
| 162 |
def load_conversation_from_df(df: pd.DataFrame, evt: gr.SelectData, history, lang):
|
| 163 |
if evt.index is None or len(df) == 0:
|
| 164 |
+
return None, [], "", CHAT_MODEL_SPECS[LING_1T]["display_name"], 0.7, ""
|
| 165 |
+
|
| 166 |
selected_id = df.iloc[evt.index[0]]['ID']
|
| 167 |
+
convo = next((c for c in history if c["id"] == selected_id), None)
|
| 168 |
+
|
| 169 |
+
if convo:
|
| 170 |
+
# Use .get() to provide defaults for old conversations
|
| 171 |
+
system_prompt = convo.get("system_prompt", "")
|
| 172 |
+
model = convo.get("model", CHAT_MODEL_SPECS[LING_1T]["display_name"])
|
| 173 |
+
temperature = convo.get("temperature", 0.7)
|
| 174 |
+
|
| 175 |
+
# Return updates for all components
|
| 176 |
+
return selected_id, convo["messages"], system_prompt, model, temperature, ""
|
| 177 |
+
|
| 178 |
+
# Fallback to creating a new chat if something goes wrong
|
| 179 |
new_id, _, new_msgs, _ = handle_new_chat(history, None, lang)
|
| 180 |
+
return new_id, new_msgs, "", CHAT_MODEL_SPECS[LING_1T]["display_name"], 0.7, ""
|
| 181 |
|
| 182 |
with gr.Row(equal_height=False, elem_id="indicator-chat-tab"):
|
| 183 |
with gr.Column(scale=1):
|
| 184 |
new_chat_btn = gr.Button(get_text('chat_new_chat_button', initial_lang))
|
| 185 |
history_df = gr.DataFrame(
|
| 186 |
+
value=get_history_df(conversation_store.value, initial_lang),
|
| 187 |
headers=["ID", get_text('chat_history_dataframe_header', initial_lang)],
|
| 188 |
datatype=["str", "str"],
|
| 189 |
interactive=False,
|
| 190 |
visible=True,
|
| 191 |
+
column_widths=["0%", "100%"]
|
| 192 |
)
|
| 193 |
|
| 194 |
with gr.Column(scale=4):
|
|
|
|
| 208 |
with gr.Column(scale=1):
|
| 209 |
model_dropdown, model_description_markdown = create_model_selector(
|
| 210 |
model_specs=CHAT_MODEL_SPECS,
|
| 211 |
+
default_model_constant=LING_1T,
|
| 212 |
+
lang_state=current_lang_state,
|
| 213 |
+
initial_lang=initial_lang
|
| 214 |
)
|
| 215 |
|
| 216 |
system_prompt_textbox = gr.Textbox(label=get_text('chat_system_prompt_label', initial_lang), lines=5, placeholder=get_text('chat_system_prompt_placeholder', initial_lang))
|
|
|
|
| 243 |
for history_update in response_generator:
|
| 244 |
yield history_update
|
| 245 |
|
| 246 |
+
def on_chat_stream_complete(conv_id, history, final_chat_history, system_prompt, model_display_name, temperature, lang):
|
| 247 |
current_convo = next((c for c in history if c["id"] == conv_id), None)
|
| 248 |
if not current_convo:
|
| 249 |
return history, gr.update()
|
| 250 |
|
| 251 |
+
# Check if this is the first turn of a new conversation
|
| 252 |
+
new_convo_title_default = get_text('chat_new_conversation_title', lang)
|
| 253 |
+
is_new_conversation = current_convo["title"] == new_convo_title_default
|
| 254 |
+
|
| 255 |
+
# If it's a new conversation and we have messages, generate a title and save metadata
|
| 256 |
+
if is_new_conversation and len(final_chat_history) > len(current_convo.get("messages", [])):
|
| 257 |
+
current_convo["system_prompt"] = system_prompt
|
| 258 |
+
current_convo["model"] = model_display_name
|
| 259 |
+
current_convo["temperature"] = temperature
|
| 260 |
+
new_title = generate_conversation_title(final_chat_history, system_prompt)
|
| 261 |
+
current_convo["title"] = new_title
|
| 262 |
|
| 263 |
current_convo["messages"] = final_chat_history
|
| 264 |
current_convo["timestamp"] = datetime.now().isoformat()
|
| 265 |
|
| 266 |
history = sorted([c for c in history if c["id"] != conv_id] + [current_convo], key=lambda x: x["timestamp"], reverse=True)
|
| 267 |
+
return history, gr.update(value=get_history_df(history, lang))
|
| 268 |
|
| 269 |
# Store all components that need i18n updates
|
| 270 |
components = {
|
|
|
|
| 285 |
}
|
| 286 |
|
| 287 |
# Wire event handlers
|
| 288 |
+
recommended_dataset.select(on_select_recommendation, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, model_dropdown, system_prompt_textbox, temperature_slider, textbox, history_df, chatbot], show_progress="hidden")
|
| 289 |
|
| 290 |
submit_btn.click(
|
| 291 |
chat_stream,
|
|
|
|
| 293 |
[chatbot]
|
| 294 |
).then(
|
| 295 |
on_chat_stream_complete,
|
| 296 |
+
[current_conversation_id, conversation_store, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, current_lang_state],
|
| 297 |
[conversation_store, history_df]
|
| 298 |
)
|
| 299 |
textbox.submit(
|
|
|
|
| 302 |
[chatbot]
|
| 303 |
).then(
|
| 304 |
on_chat_stream_complete,
|
| 305 |
+
[current_conversation_id, conversation_store, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, current_lang_state],
|
| 306 |
[conversation_store, history_df]
|
| 307 |
)
|
| 308 |
|
| 309 |
new_chat_btn.click(handle_new_chat, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, chatbot, history_df])
|
| 310 |
+
history_df.select(load_conversation_from_df, inputs=[history_df, conversation_store, current_lang_state], outputs=[current_conversation_id, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, textbox])
|
| 311 |
|
| 312 |
return components
|
| 313 |
|
tab_code.py
CHANGED
|
@@ -108,7 +108,9 @@ def create_code_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 108 |
)
|
| 109 |
model_choice_dropdown, model_description_markdown = create_model_selector(
|
| 110 |
model_specs=CHAT_MODEL_SPECS,
|
| 111 |
-
default_model_constant=LING_1T
|
|
|
|
|
|
|
| 112 |
)
|
| 113 |
prompt_input = gr.Textbox(lines=5, placeholder=get_text('code_prompt_placeholder', initial_lang), label=get_text('code_prompt_label', initial_lang))
|
| 114 |
overall_style_input = gr.Textbox(label=get_text('code_overall_style_label', initial_lang), placeholder=get_text('code_overall_style_placeholder', initial_lang), lines=2)
|
|
@@ -207,7 +209,9 @@ def create_code_tab(initial_lang: str, current_lang_state: gr.State):
|
|
| 207 |
"fullscreen_button": fullscreen_button, "preview_output": preview_output,
|
| 208 |
"source_code_tab": source_code_tab, "source_code_header": source_code_header,
|
| 209 |
"code_output": code_output, "refresh_button": refresh_button,
|
| 210 |
-
"log_chatbot": log_chatbot, "js_error_channel": js_error_channel
|
|
|
|
|
|
|
| 211 |
}
|
| 212 |
|
| 213 |
def update_language(lang: str, components: dict):
|
|
|
|
| 108 |
)
|
| 109 |
model_choice_dropdown, model_description_markdown = create_model_selector(
|
| 110 |
model_specs=CHAT_MODEL_SPECS,
|
| 111 |
+
default_model_constant=LING_1T,
|
| 112 |
+
lang_state=current_lang_state,
|
| 113 |
+
initial_lang=initial_lang
|
| 114 |
)
|
| 115 |
prompt_input = gr.Textbox(lines=5, placeholder=get_text('code_prompt_placeholder', initial_lang), label=get_text('code_prompt_label', initial_lang))
|
| 116 |
overall_style_input = gr.Textbox(label=get_text('code_overall_style_label', initial_lang), placeholder=get_text('code_overall_style_placeholder', initial_lang), lines=2)
|
|
|
|
| 209 |
"fullscreen_button": fullscreen_button, "preview_output": preview_output,
|
| 210 |
"source_code_tab": source_code_tab, "source_code_header": source_code_header,
|
| 211 |
"code_output": code_output, "refresh_button": refresh_button,
|
| 212 |
+
"log_chatbot": log_chatbot, "js_error_channel": js_error_channel,
|
| 213 |
+
"model_choice_dropdown": model_choice_dropdown,
|
| 214 |
+
"model_description_markdown": model_description_markdown
|
| 215 |
}
|
| 216 |
|
| 217 |
def update_language(lang: str, components: dict):
|
ui_components/model_selector.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
def create_model_selector(model_specs, default_model_constant):
|
| 4 |
"""
|
| 5 |
-
Creates a reusable Gradio model selector component.
|
| 6 |
|
| 7 |
Args:
|
| 8 |
model_specs (dict): A dictionary containing the specifications for each model.
|
| 9 |
default_model_constant (str): The key for the default model in the model_specs dictionary.
|
|
|
|
|
|
|
| 10 |
|
| 11 |
Returns:
|
| 12 |
tuple: A tuple containing the model dropdown and the model description markdown components.
|
|
@@ -14,27 +17,53 @@ def create_model_selector(model_specs, default_model_constant):
|
|
| 14 |
display_names = [d["display_name"] for d in model_specs.values()]
|
| 15 |
default_display_name = model_specs[default_model_constant]["display_name"]
|
| 16 |
|
| 17 |
-
|
| 18 |
model_dropdown = gr.Dropdown(
|
| 19 |
choices=display_names,
|
| 20 |
-
label="
|
| 21 |
value=default_display_name,
|
| 22 |
interactive=True
|
| 23 |
)
|
| 24 |
|
| 25 |
-
def get_model_description(model_display_name):
|
|
|
|
| 26 |
for model_spec in model_specs.values():
|
| 27 |
if model_spec["display_name"] == model_display_name:
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
|
|
|
|
| 34 |
model_dropdown.change(
|
| 35 |
-
fn=
|
| 36 |
-
inputs=[model_dropdown],
|
| 37 |
-
outputs=[model_description_markdown]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
)
|
| 39 |
|
| 40 |
-
return model_dropdown, model_description_markdown
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from i18n import get_text
|
| 3 |
|
| 4 |
+
def create_model_selector(model_specs, default_model_constant, lang_state, initial_lang):
|
| 5 |
"""
|
| 6 |
+
Creates a reusable Gradio model selector component that is language-aware.
|
| 7 |
|
| 8 |
Args:
|
| 9 |
model_specs (dict): A dictionary containing the specifications for each model.
|
| 10 |
default_model_constant (str): The key for the default model in the model_specs dictionary.
|
| 11 |
+
lang_state (gr.State): The Gradio state object holding the current language.
|
| 12 |
+
initial_lang (str): The initial language to set up the component.
|
| 13 |
|
| 14 |
Returns:
|
| 15 |
tuple: A tuple containing the model dropdown and the model description markdown components.
|
|
|
|
| 17 |
display_names = [d["display_name"] for d in model_specs.values()]
|
| 18 |
default_display_name = model_specs[default_model_constant]["display_name"]
|
| 19 |
|
|
|
|
| 20 |
model_dropdown = gr.Dropdown(
|
| 21 |
choices=display_names,
|
| 22 |
+
label=get_text("model_selector_label", initial_lang),
|
| 23 |
value=default_display_name,
|
| 24 |
interactive=True
|
| 25 |
)
|
| 26 |
|
| 27 |
+
def get_model_description(model_display_name, lang):
|
| 28 |
+
"""Fetches the description for a given model in the specified language."""
|
| 29 |
for model_spec in model_specs.values():
|
| 30 |
if model_spec["display_name"] == model_display_name:
|
| 31 |
+
# Safely access the description dictionary
|
| 32 |
+
description_dict = model_spec.get("description", {})
|
| 33 |
+
return description_dict.get(lang, "Description not available.")
|
| 34 |
+
return "Model not found."
|
| 35 |
+
|
| 36 |
+
model_description_markdown = gr.Markdown(
|
| 37 |
+
get_model_description(default_display_name, initial_lang),
|
| 38 |
+
container=True
|
| 39 |
+
)
|
| 40 |
|
| 41 |
+
# Handler to update the description based on dropdown and language state
|
| 42 |
+
def update_description(model_name, lang):
|
| 43 |
+
return get_model_description(model_name, lang)
|
| 44 |
|
| 45 |
+
# Event listener for when the model selection changes
|
| 46 |
model_dropdown.change(
|
| 47 |
+
fn=update_description,
|
| 48 |
+
inputs=[model_dropdown, lang_state],
|
| 49 |
+
outputs=[model_description_markdown],
|
| 50 |
+
show_progress="hidden"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Event listener for when the language changes
|
| 54 |
+
lang_state.change(
|
| 55 |
+
fn=update_description,
|
| 56 |
+
inputs=[model_dropdown, lang_state],
|
| 57 |
+
outputs=[model_description_markdown],
|
| 58 |
+
show_progress="hidden"
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Also need to update the label on language change
|
| 62 |
+
lang_state.change(
|
| 63 |
+
fn=lambda lang: gr.update(label=get_text("model_selector_label", lang)),
|
| 64 |
+
inputs=[lang_state],
|
| 65 |
+
outputs=[model_dropdown],
|
| 66 |
+
show_progress="hidden"
|
| 67 |
)
|
| 68 |
|
| 69 |
+
return model_dropdown, model_description_markdown
|